Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Technique makes NMR more useful for nanomaterials, exotic matter research

20.12.2017

Nuclear magnetic resonance (NMR) is a powerful scientific tool used in medical imaging and in probing the chemical structure of molecules and compounds. New research from Brown University shows a technique that helps adapt NMR to study the physical properties of thin films, two-dimensional nanomaterials and exotic states of matter.

NMR involves applying a strong magnetic field to sample and then zapping it with pulses of radio waves. The magnetic field aligns the magnetic moments, or "spins," of atomic nuclei within the sample. The radio waves will flip the spins of certain nuclei in the opposite direction, depending on the frequency of the waves. Scientists can use the signal associated of spin flips at different frequencies to create images or to determine a sample's molecular structure.


Researchers have shown how flat NMR probes, as apposed to cylindrical ones, can be made useful in studying the properties of nanomaterials.

Credit: Mitrovic lab / Brown University

"NMR is a very useful technique, but the signal you get is very weak," said Vesna Mitrovic, an associate professor of physics and the senior author of the research, which is published in Review of Scientific Instruments. "To get a usable signal, you need to detect a lot of spins, which means you need a lot of material, relatively speaking. So much of the work we're doing now in physics is with thin films that are part of small devices or materials that have tiny crystals with odd shapes, and it's really difficult to get an NMR signal in those cases."

Part of the problem has to do with the geometry of the probe used to deliver the radio pulses and detect the associated signal. It's usually a solenoid, a cylindrical coil of wire inside of which the sample is placed. The NMR signal is strongest when a sample takes up most of the space available inside the cylinder. But if the sample is small compared to the volume of the cylinder -- as thin films and nanomaterials would be -- the signal weakens to nearly nothing.

But for the past few years, Mitrovic's lab at Brown has been using flat NMR coils for a variety of experiments aimed at exploring exotic materials and strange states of matter. Flat coils can be placed directly on or very close to a sample, and as a result they don't suffer from the signal loss of a solenoid. These types of NMR coils have been around for years and used for some specific applications in NMR imaging, Mitrovic says, but they've not been used in quite the same way as her lab has been using them.

For this latest research, Mitrovic and her colleagues showed that flat coils are not only useful in boosting NMR signal, but that different geometries of flat coils can maximize signal for samples of different shapes and in different types of experiments.

For instance, in experiments using thin-films of the semiconductor indium phosphate, the researchers showed that very small samples yield the most signal when placed at the center of flat, circular coil. For larger samples, and for experiments in which it is important to vary the orientation of the external magnetic field, a meander-line shape (a line that makes a series of right-angle turns) worked best.

The ability to get a signal at varying magnetic field orientations is important, Mitrovic says. "There are exotic materials and interesting physical states that can only be probed with certain magnetic field orientations," she said. "So knowing how to optimize our probe for that is really helpful."

Another advantage to flat coils is it gives experimenters access to their sample, as opposed to having it caged inside a solenoid.

"Many of the states we're interested in are induced by manipulating the sample -- applying an electric current to it or applying a stress to it," Mitrovic said. "The flat coils make it much easier to be able to do those manipulations."

Mitrovic hopes the guidance this research provides in how to optimize flat coils will be useful to other physicists interested in using NMR to investigate exotic materials and states of matter.

###

Mitrovic's co-authors were Wencong Liu and Lu Lu, both from the Brown. The research was supported by a grant from the National Science Foundation (DMR-1608760).

Media Contact

Kevin Stacey
kevin_stacey@brown.edu
401-863-3766

 @brownuniversity

http://news.brown.edu/ 

Kevin Stacey | EurekAlert!

More articles from Materials Sciences:

nachricht New concept for structural colors
18.05.2018 | Technische Universität Hamburg-Harburg

nachricht Saarbrücken mathematicians study the cooling of heavy plate from Dillingen
17.05.2018 | Universität des Saarlandes

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>