Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Synthetic Photosynthesis — Turning Carbon Dioxide into Raw Materials


Researchers at Siemens are developing a system that uses surplus energy from renewable sources to convert carbon dioxide into carbon compounds for industry. Their vision is to eventually manufacture modules that would cover buildings, concentrate ambient carbon dioxide, and produce chemicals like methanol from sunlight.

There is probably no other chemical reaction that is as productive as photosynthesis —a biological process that uses light energy and water to convert CO2 into energy-rich substances such as sugars inside plants.

During the photosynthesis process: Crystals of the catalytic layers.

Scientists estimate that plants produce around 150 billion metric tons of energy-rich biomass worldwide every year. In view of this, researchers are investigating ways of replicating the biomechanisms involved in photosynthesis.

Unfortunately, they haven’t been very successful so far. Photosynthetic processes involve many closely interconnected and extremely complex protein structures based on precisely-defined atomic arrangement that cannot be easily replicated in the laboratory.

As a result, scientists have so far failed to achieve their dream of using sunlight to operate an efficient biochemical “factory.”

However, developers at Siemens Corporate Technology (CT) in Munich have now come a big step closer to making the vision of synthetic photosynthesis a reality. They did this by creating shoebox-sized modules in which carbon dioxide is energetically stimulated in the same way as in plant cells.

Depending on the testing conditions, the activated CO2 reacts to create a variety of other molecules such as ethylene, which the chemical industry needs for the production of plastics. CO2 can also be converted into the energy-rich gas methane, the main component of natural gas, or carbon monoxide, which can be used to produce fuels such as ethanol, for example.

Exploiting Carbon Dioxide

Plants exploit carbon dioxide by absorbing light energy using pigments such as green chlorophyll. This process releases energy-rich electrons in the chlorophyll. Enzymes then transfer these electrons to CO2, which becomes chemically active and reacts with other compounds. “A number of teams are trying to completely replicate photosynthesis, especially in the United States and Japan,” says Prof. Maximilian Fleischer, who manages synthetic photosynthesis research at CT as part of a project known as “CO2toValue.” “But this is currently almost impossible to achieve, due to its complexity. That’s why we are taking a more pragmatic approach, in which we are gradually getting closer to achieving photosynthesis in a number of steps. Such an approach is necessary if you want to quickly launch a product on the market.”

As a result, Fleischer and chemists Günther Schmid and Kerstin Wiesner, as well as about ten others, are not yet trying to capture light. Instead, they are focusing on activating CO2 and converting it into products. To do this, they are using electricity generated from renewable sources.

Working with Universities

The key elements of the CO2toValue project are chemical catalysts that charge the inert CO2 with energy-rich electrons. The challenge is to charge only the carbon dioxide with electrons and not surrounding water molecules, because the latter would merely result in the production of conventional hydrogen. Specialists at the University of Lausanne in Switzerland and materials scientists at the University of Bayreuth are working with Fleischer’s team to develop catalysts on behalf of Siemens. This work has already led to the creation of a variety of catalysts, some of which contain copper, which have high yields of products such as carbon monoxide.

The development of such catalysts is challenging work because their behavior can only be partially predicted. As a result each new catalyst must be examined in a long series of tests and under a variety of conditions. Another factor to be considered is that a catalyst’s effectiveness is partly determined by its surface structure. That’s why its manufacturing process must be carefully controlled to create a highly reactive surface resembling a miniature craggy mountain range with a large surface . The catalysts that Schmid developed in cooperation with university partners are already very effective at converting a large part of CO2 into the desired products.

Fleischer looks through two Plexiglas windows at a bubbling reaction that is taking place inside a small photosynthesis module. The module is basically an electrolysis cell, in which a current is conducted through electrodes into highly-carbonated water, that functions as an electrical conductor.

The trick now is to manufacture the cathode, the negative pole of the special catalyst, in such a way that it is able to transfer electrons directly to the CO2 in order to produce the desired product. The water in the module is separated into hydrogen and oxygen at the other pole. The hydrogen is needed to create hydrocarbons, and the oxygen released during this process can also be used, depending on which product is desired.

The carbon dioxide that is contained in the water is initially blown into the electrolysis cell from a gas cylinder at the lab. “This process already works very well for the production of carbon monoxide, during which 95 percent of the electricity is used to produce the carbon monoxide,” explains Fleischer. By selecting appropriate catalysts and changing the current density or the salts that are dissolved in the water, the researchers can precisely control the reaction and make it convert the carbon dioxide into ethylene or carbon monoxide, for example.

Fleischer primarily focuses on such creating high-quality substances that are needed by the chemical industry. What makes these substances particularly interesting is that today the chemical industry is still almost wholly dependent on raw materials derived from petroleum.

“Of course we could also produce methane gas, but it wouldn’t be a profitable business model because you can obtain it much more cheaply from natural gas,” says Fleischer. However, a manufacturing facility would pay off if it produced sought-after chemicals such as carbon monoxide, ethylene or alcohols. These currently cost between €650 and €1,200 per metric ton, and many millions of tons of them are needed every year. A large-scale demonstration facility is scheduled to go into operation in Fleischer’s lab as early as 2015. Unlike the current facility, the new one’s output won’t be measured in watts, but in kilowatts.

By then at the latest, Fleischer wants to capture the power of the sun. He is thinking of having the photosynthesis occur in glass modules similar to photovoltaic cells. Light would stream in from the top, while carbon dioxide would flow into the system from the bottom. Fleischer has also determined how this “light trap” would work.

Instead of trying to imitate complex chlorophyll molecules, Fleischer would use “light-collecting grains” based on semiconductors. These grains would be enveloped by catalysts. If everything goes as planned, the semiconductor would supply energy-rich electrons, which the catalyst would then transfer to CO2 in fractions of a second. The entire process would be driven by light.

The system is expected to be ready in about two years. Depending on the application, the facility of the future will initially use CO2 from the exhaust produced by power stations, factories, and chemical plants. Subsequently, however, it will use CO2 from the atmosphere. With a view to accomplishing this, researchers are developing materials capable of absorbing CO2 like a sponge – and thus concentrating it. This would allow production of methanol, a valuable biofuel. Fleischer considers these prospects very tempting. “The modules could cover building façades, where they would extract CO2 from the air and from exhaust — and turn it into fuel,” he says.

Synthetic photosynthesis is a fascinating concept — even in the current initial stage, when it lacks any light-collecting ability. Fleischer thinks it could be used to store energy from renewable sources. “On windy and sunny days, Germany already has more electricity generated from renewable sources than it needs. What it lacks is sufficient energy storage capacity,” he says. “However, if the electricity were fed into photosynthesis modules, it could be used to produce valuable chemicals. This would help to reduce demand for petroleum and thus cut greenhouse gas emissions. What’s more, human beings will have incidentally managed to imitate the most productive chemical process on Earth. The dream of operating biochemical factories efficiently with sunlight could become a reality.”
Tim Schröder

Tim Schröder | Siemens Pictures of the Future
Further information:

More articles from Materials Sciences:

nachricht Researchers printed graphene-like materials with inkjet
18.08.2017 | Aalto University

nachricht Superconductivity research reveals potential new state of matter
17.08.2017 | DOE/Los Alamos National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>



Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

More VideoLinks >>>