Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Surface Characteristics Influence Cellular Growth on Semiconductor Material

12.03.2014

Surface Characteristics Influence Cellular Growth on Semiconductor Material

The finding stems from a study performed by researchers at North Carolina State University, the University of North Carolina at Chapel Hill and Purdue University, and may have utility for developing future neural implants.


This image shows a PC12 cell growing onto a randomly textures surface. Note how the cell is spreading out in all directions. (Click to enlarge.)

“We wanted to know how a material’s texture and structure can influence cell adhesion and differentiation,” says Lauren Bain, lead author of a paper describing the work and a Ph.D. student in the joint biomedical engineering program at NC State and UNC-Chapel Hill. “Basically, we wanted to know if changing the physical characteristics on the surface of a semiconductor could make it easier for an implant to be integrated into neural tissue – or soft tissue generally.”

The researchers worked with gallium nitride (GaN), because it is one of the most promising semiconductor materials for use in biomedical applications. They also worked with PC12 cells, which are model cells used to mimic the behavior of neurons in lab experiments.

In the study, the researchers grew PC12 cells on GaN squares with four different surface characteristics: some squares were smooth; some had parallel grooves (resembling an irregular corduroy pattern); some were randomly textured (resembling a nanoscale mountain range); and some were covered with nanowires (resembling a nanoscale bed of nails).

Very few PC12 cells adhered to the smooth surface. And those that did adhere grew normally, forming long, narrow extensions. More PC12 cells adhered to the squares with parallel grooves, and these cells also grew normally.

About the same number of PC12 cells adhered to the randomly textured squares as adhered to the parallel grooves. However, these cells did not grow normally. Instead of forming narrow extensions, the cells flattened and spread across the GaN surface in all directions.

More PC12 cells adhered to the nanowire squares than to any of the other surfaces, but only 50 percent of the cells grew normally. The other 50 percent spread in all directions, like the cells on the randomly textured surfaces.

“This tells us that the actual shape of the surface characteristics influences the behavior of the cells,” Bain says. “It’s a non-chemical way of influencing the interaction between the material and the body. That’s something we can explore as we continue working to develop new biomedical technologies.”

The paper, “Surface Topography and Chemistry Shape Cellular Behavior on Wide Band-Gap Semiconductors,” is published in Acta Biomaterialia. Senior author of the paper is Dr. Albena Ivanisevic, an associate professor of materials science and engineering at NC State and associate professor of the joint biomedical engineering program at NC State and UNC-Chapel Hill. The paper’s co-authors include Dr. Ramon Collazo, an assistant professor of materials science and engineering at NC State; Shu-han Hsu and Nicole Pfiester Latham, Ph.D. students at Purdue University; and Dr. Michael Manfra of Purdue University.

-shipman-

Note to Editors: The study abstract follows.

“Surface Topography and Chemistry Shape Cellular Behavior on Wide Band-Gap Semiconductors”

Authors: Lauren E. Bain and Albena Ivanisevic, North Carolina State University and the University of North Carolina at Chapel Hill; Ramon Collazo, North Carolina State University; Shu-han Hsu, Nicole Pfiester Latham, and Michael J. Manfra, Purdue University

Published: Online February 28, 2014, Acta Biomaterialia

DOI: 10.1016/j.actbio.2014.02.038

Abstract: The chemical stability and electrical properties of gallium nitride have made it a promising material for the development of biocompatible electronics, a range of devices including biosensors as well as interfaces for probing and controlling cellular growth and signaling. To improve the interface formed between probe material and cell or biosystem, surface topography and chemistry can be applied to modify the ways in which the device interacts with its environment. PC12 cells are cultured on as-grown planar, unidirectionally polished, etched nanoporous, and nanowire GaN surfaces with and without a physisorbed peptide sequence that promotes cell adhesion. While cells demonstrate preferential adhesion to roughened surfaces over as-grown, flat surfaces, the topography of that roughness also influences the morphology of cellular adhesion and differentiation in neurotypic cells. Addition of the peptide sequence generally contributes further to cellular adhesion and promotes development of stereotypic long, thin neurite outgrowths over alternate morphologies. The dependence of cell behavior on both the topographic morphology and surface chemistry is thus demonstrated, providing further evidence for the importance of surface modification for modulating bio-inorganic interfaces.

Matt Shipman | EurekAlert!

Further reports about: Biomaterialia Cellular Influence Semiconductor Surface adhesion grooves materials nanoscale smooth

More articles from Materials Sciences:

nachricht New design improves performance of flexible wearable electronics
23.06.2017 | North Carolina State University

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>