Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Surface Characteristics Influence Cellular Growth on Semiconductor Material

12.03.2014

Surface Characteristics Influence Cellular Growth on Semiconductor Material

The finding stems from a study performed by researchers at North Carolina State University, the University of North Carolina at Chapel Hill and Purdue University, and may have utility for developing future neural implants.


This image shows a PC12 cell growing onto a randomly textures surface. Note how the cell is spreading out in all directions. (Click to enlarge.)

“We wanted to know how a material’s texture and structure can influence cell adhesion and differentiation,” says Lauren Bain, lead author of a paper describing the work and a Ph.D. student in the joint biomedical engineering program at NC State and UNC-Chapel Hill. “Basically, we wanted to know if changing the physical characteristics on the surface of a semiconductor could make it easier for an implant to be integrated into neural tissue – or soft tissue generally.”

The researchers worked with gallium nitride (GaN), because it is one of the most promising semiconductor materials for use in biomedical applications. They also worked with PC12 cells, which are model cells used to mimic the behavior of neurons in lab experiments.

In the study, the researchers grew PC12 cells on GaN squares with four different surface characteristics: some squares were smooth; some had parallel grooves (resembling an irregular corduroy pattern); some were randomly textured (resembling a nanoscale mountain range); and some were covered with nanowires (resembling a nanoscale bed of nails).

Very few PC12 cells adhered to the smooth surface. And those that did adhere grew normally, forming long, narrow extensions. More PC12 cells adhered to the squares with parallel grooves, and these cells also grew normally.

About the same number of PC12 cells adhered to the randomly textured squares as adhered to the parallel grooves. However, these cells did not grow normally. Instead of forming narrow extensions, the cells flattened and spread across the GaN surface in all directions.

More PC12 cells adhered to the nanowire squares than to any of the other surfaces, but only 50 percent of the cells grew normally. The other 50 percent spread in all directions, like the cells on the randomly textured surfaces.

“This tells us that the actual shape of the surface characteristics influences the behavior of the cells,” Bain says. “It’s a non-chemical way of influencing the interaction between the material and the body. That’s something we can explore as we continue working to develop new biomedical technologies.”

The paper, “Surface Topography and Chemistry Shape Cellular Behavior on Wide Band-Gap Semiconductors,” is published in Acta Biomaterialia. Senior author of the paper is Dr. Albena Ivanisevic, an associate professor of materials science and engineering at NC State and associate professor of the joint biomedical engineering program at NC State and UNC-Chapel Hill. The paper’s co-authors include Dr. Ramon Collazo, an assistant professor of materials science and engineering at NC State; Shu-han Hsu and Nicole Pfiester Latham, Ph.D. students at Purdue University; and Dr. Michael Manfra of Purdue University.

-shipman-

Note to Editors: The study abstract follows.

“Surface Topography and Chemistry Shape Cellular Behavior on Wide Band-Gap Semiconductors”

Authors: Lauren E. Bain and Albena Ivanisevic, North Carolina State University and the University of North Carolina at Chapel Hill; Ramon Collazo, North Carolina State University; Shu-han Hsu, Nicole Pfiester Latham, and Michael J. Manfra, Purdue University

Published: Online February 28, 2014, Acta Biomaterialia

DOI: 10.1016/j.actbio.2014.02.038

Abstract: The chemical stability and electrical properties of gallium nitride have made it a promising material for the development of biocompatible electronics, a range of devices including biosensors as well as interfaces for probing and controlling cellular growth and signaling. To improve the interface formed between probe material and cell or biosystem, surface topography and chemistry can be applied to modify the ways in which the device interacts with its environment. PC12 cells are cultured on as-grown planar, unidirectionally polished, etched nanoporous, and nanowire GaN surfaces with and without a physisorbed peptide sequence that promotes cell adhesion. While cells demonstrate preferential adhesion to roughened surfaces over as-grown, flat surfaces, the topography of that roughness also influences the morphology of cellular adhesion and differentiation in neurotypic cells. Addition of the peptide sequence generally contributes further to cellular adhesion and promotes development of stereotypic long, thin neurite outgrowths over alternate morphologies. The dependence of cell behavior on both the topographic morphology and surface chemistry is thus demonstrated, providing further evidence for the importance of surface modification for modulating bio-inorganic interfaces.

Matt Shipman | EurekAlert!

Further reports about: Biomaterialia Cellular Influence Semiconductor Surface adhesion grooves materials nanoscale smooth

More articles from Materials Sciences:

nachricht World’s Highest Magnetic Field* (1,020MHz) NMR developed
03.07.2015 | National Institute for Materials Science

nachricht Diamond provides technical progress
03.07.2015 | Julius-Maximilians-Universität Würzburg

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Viaducts with wind turbines, the new renewable energy source

Wind turbines could be installed under some of the biggest bridges on the road network to produce electricity. So it is confirmed by calculations carried out by a European researchers team, that have taken a viaduct in the Canary Islands as a reference. This concept could be applied in heavily built-up territories or natural areas with new constructions limitations.

The Juncal Viaduct, in Gran Canaria, has served as a reference for Spanish and British researchers to verify that the wind blowing between the pillars on this...

Im Focus: X-rays and electrons join forces to map catalytic reactions in real-time

New technique combines electron microscopy and synchrotron X-rays to track chemical reactions under real operating conditions

A new technique pioneered at the U.S. Department of Energy's Brookhaven National Laboratory reveals atomic-scale changes during catalytic reactions in real...

Im Focus: Iron: A biological element?

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and a half billion years ago.

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and...

Im Focus: Thousands of Droplets for Diagnostics

Researchers develop new method enabling DNA molecules to be counted in just 30 minutes

A team of scientists including PhD student Friedrich Schuler from the Laboratory of MEMS Applications at the Department of Microsystems Engineering (IMTEK) of...

Im Focus: Bionic eye clinical trial results show long-term safety, efficacy vision-restoring implant

Patients using Argus II experienced significant improvement in visual function and quality of life

The three-year clinical trial results of the retinal implant popularly known as the "bionic eye," have proven the long-term efficacy, safety and reliability of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

World Conference on Regenerative Medicine: Abstract Submission has been extended to 24 June

16.06.2015 | Event News

MUSE hosting Europe’s largest science communication conference

11.06.2015 | Event News

 
Latest News

Siemens receives order for offshore wind power plant in Great Britain

03.07.2015 | Press release

'Déjà vu all over again:' Research shows 'mulch fungus' causes turfgrass disease

03.07.2015 | Agricultural and Forestry Science

Discovery points to a new path toward a universal flu vaccine

03.07.2015 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>