Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Superconductivity without cooling

03.12.2014

An infrared laser pulse briefly modifies the structure of a high-temperature superconductor and thus removes its electrical resistance even at room temperature

Superconductivity is a remarkable phenomenon: superconductors can transport electric current without any resistance and thus without any losses whatsoever. It is already in use in some niche areas, for example as magnets for nuclear spin tomography or particle accelerators. However, the materials must be cooled to very low temperatures for this purpose.


No resistance at room temperature: The resonant excitation of oxygen oscillations (blurred) between CuO2 double layers (light blue, Cu yellowy orange, O red) with short light pulses leads to the atoms in the crystal lattice briefly shifting away from their equilibrium positions. This shift brings about an increase in the separations of CuO2 layers within a double layer and a simultaneous decrease in the separations between double layers. It is highly probable that this enhances the superconductivity.

© Jörg Harms/MPI for the Structure and Dynamics of Matter

But during the past year, an experiment has provided some surprise. With the aid of short infrared laser pulses, researchers have succeeded for the first time in making a ceramic superconducting at room temperature – albeit for only a few millionths of a microsecond. An international team, in which physicists from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg have made crucial contributions, has now been able to present a possible explanation of the effect in the journal Nature:

The scientists believe that laser pulses cause individual atoms in the crystal lattice to shift briefly and thus enhance the superconductivity. The findings could assist in the development of materials which become superconducting at significantly higher temperatures and would thus be of interest for new applications.

In the beginning, superconductivity was known only in a few metals at temperatures just above absolute zero at minus 273 degrees Celsius. Then, in the 1980s, physicists discovered a new class, based on ceramic materials. These already conduct electricity at temperatures of around minus 200 degrees Celsius without losses, and were therefore called high-temperature superconductors.

One of these ceramics is the compound yttrium barium copper oxide (YBCO). It is one of the most promising materials for technical applications such as superconducting cables, motors and generators.

The YBCO crystal has a special structure: thin double layers of copper oxide alternate with thicker intermediate layers which contain barium as well as copper and oxygen. The superconductivity has its origins in the thin double layers of copper dioxide. This is where electrons can join up to form so-called Cooper pairs. These pairs can “tunnel” between the different layers, meaning they can pass through these layers like ghosts can pass through walls, figuratively speaking – a typical quantum effect.

The crystal only becomes superconducting below a “critical temperature”, however, as only then do the Cooper pairs tunnel not only within the double layers, but also “spirit” through the thicker layers to the next double layer. Above the critical temperature, this coupling between the double layers is missing, and the material becomes a poorly conducting metal.

The result helps material scientists to develop new superconductors

In 2013, an international team working with Max Planck researcher Andrea Cavalleri discovered that when YBCO is irradiated with infrared laser pulses it briefly becomes superconducting at room temperature. The laser light had apparently modified the coupling between the double layers in the crystal. The precise mechanism remained unclear, however – until the physicists were able to solve the mystery with an experiment at the LCLS in the US, the world’s most powerful X-ray laser.

“We started by again sending an infrared pulse into the crystal, and this excited certain atoms to oscillate,” explains Max Planck physicist Roman Mankowsky, lead author of the current Nature study. “A short time later, we followed it with a short X-ray pulse in order to measure the precise crystal structure of the excited crystal.”

The result: The infrared pulse had not only excited the atoms to oscillate, but had also shifted their position in the crystal as well. This briefly made the copper dioxide double layers thicker - by two picometres, or one hundredth of an atomic diameter - and the layer between them became thinner by the same amount. This in turn increased the quantum coupling between the double layers to such an extent that the crystal became superconducting at room temperature for a few picoseconds.

On the one hand, the new result helps to refine the still incomplete theory of high-temperature superconductors. “On the other, it could assist materials scientists to develop new superconductors with higher critical temperatures,” says Mankowsky. “And ultimately to reach the dream of a superconductor that operates at room temperature and needs no cooling at all.”

Until now, superconducting magnets, motors and cables must be cooled to temperatures far below zero with liquid nitrogen or helium. If this complex cooling were no longer necessary, it would mean a breakthrough for this technology.


Contact


Prof. Dr. Andrea Cavalleri
Max Planck Institute for the Structure and Dynamics of Matter, Hamburg
Phone: +49 40 8998-5354

Email: andrea.cavalleri@mpsd.mpg.de

Dr. Michael Först
Max Planck Institute for the Structure and Dynamics of Matter, Hamburg
Phone: +49 40 8998-5360

Fax: +49 40 8998-1958

Email: michael.foerst@mpsd.cfel.de

Roman Mankowsky
Max Planck Institute for the Structure and Dynamics of Matter, Hamburg
Phone: +49 40 8998-6261

Email: roman.mankowsky@mpsd.mpg.de


Original publication
R. Mankowsky, A. Subedi, M. Först, S. O. Mariager, M. Chollet, H. T. Lemke, J. S. Robinson, J. M. Glownia, M. P. Minitti, A. Frano, M. Fechner, N. A. Spaldin, T. Loew, B. Keimer, A. Georges & A. Cavalleri

Nonlinear lattice dynamics as a basis for enhanced superconductivity in YBa2Cu3O6.5

Nature, 4 December 2014; doi:10.1038/nature13875

Prof. Dr. Andrea Cavalleri | Max Planck Institute for the Structure and Dynamics of Matter, Hamburg
Further information:
http://www.mpg.de/8785897/superconductivity-room-temperature

More articles from Materials Sciences:

nachricht Strange but true: Turning a material upside down can sometimes make it softer
20.10.2017 | Universitat Autonoma de Barcelona

nachricht Metallic nanoparticles will help to determine the percentage of volatile compounds
20.10.2017 | Lomonosov Moscow State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>