Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Superconductivity seen in a new light

31.03.2016

Superconducting materials have the characteristic of letting an electric current flow without resistance.

The study of superconductors with a high critical temperature discovered in the 1980s remains a very attractive research subject for physicists. Indeed, many experimental observations still lack an adequate theoretical description.


Artist's impression of a high critical temperature superconductor immersed in a magnetic field. The magnetic field generates whirls of current called vortices. These allow to better perceive an ordered electronic structure that coexists with the superconducting state.

Credit: © UNIGE - Xavier Ravinet

Researchers from the University of Geneva (UNIGE) in Switzerland and the Technical University Munich in Germany have managed to lift the veil on the electronic characteristics of high-temperature superconductors.

Their research, published in Nature Communications, show that the electronic densities measured in these superconductors are a combination of two separate effects. As a result, they propose a new model that suggests the existence of two coexisting states rather than competing ones as was postulated for the past thirty years. A small revolution in the world of superconductivity.

A superconducting material is a material that, below a certain temperature, loses all electrical resistance (equal to zero). When immersed in a magnetic field, high-temperature superconductors (high-Tc) allow this field to penetrate in the form of filamentary regions, called vortices, in which the material is no longer superconducting. Each vortex is a whirl of electronic currents generating their own magnetic field and in which the electronic structure is different from the rest of the material.

Coexistence rather than competition

Some theoretical models describe high-Tc superconductors as a competition between two fundamental states, each developing its own spectral signature. The first is characterized by an ordered spatial arrangement of electrons. The second, corresponding to the superconducting phase, is characterized by electrons assembled in pairs.

«However, by measuring the density of electronic states with local tunneling spectroscopy, we discovered that the spectra that were attributed solely to the core of a vortex, where the material is not in the superconducting state, are also present elsewhere, that is to say in areas where the superconducting state exists. This implies that these spectroscopic signatures do not originate in the vortex cores and cannot be in competition with the superconducting state», explains Christoph Renner, professor in the Department of Quantum Matter Physics of the Faculty of Science at UNIGE.

«This study therefore questions the view that these two states are in competition, as largely assumed until now. Instead, they turn out to be two coexisting states that together contribute to the measured spectra», professor Renner says. Indeed, physicists from UNIGE have shown, using theoretical simulation tools, that the experimental spectra can be reproduced perfectly by considering the superposition of the spectroscopic signature of a superconductor and this other electronic signature, brought to light through this new research.

This discovery is a breakthrough towards understanding the nature of the high temperature superconducting state. It puts some theoretical models based on the competition of the two states mentioned above in difficulty. It also sheds new light on the electronic nature of the vortex cores, which potentially has an impact on their dynamics. Mastery of this dynamics, and particularly of the anchoring of vortices that depend on their electronic nature, is critical for many applications, such as high field electromagnets.

Media Contact

Christoph Renner
Christoph.renner@unige.ch
41-223-793-544

 @UNIGEnews

http://www.unige.ch 

Christoph Renner | EurekAlert!

More articles from Materials Sciences:

nachricht Researchers shoot for success with simulations of laser pulse-material interactions
29.03.2017 | DOE/Oak Ridge National Laboratory

nachricht Nanomaterial makes laser light more applicable
28.03.2017 | Christian-Albrechts-Universität zu Kiel

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>