Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Successful Mechanical Testing of Nanowires

07.12.2017

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced reliability and for energy-efficient automobiles. The origin of the exceptional properties of the tiny metallic bodies remains to be understood in detail.


Model of nanoporous gold magnified thousands of times and manufactured in a 3-D printer. Good to see: porous structure of the nanowires.

HZG/Rasmus Lippels

Using innovative experimental approaches, researchers at Helmholtz-Zentrum Geesthacht (HZG) and Hamburg University of Technology (TUHH) have found what makes the nanostructures so strong.

Their findings have been published in two renowned scientific journals – in "Nano Letters" and currently in "Nature Communications". The results could promote the development of future novel lightweight materials.

The metal wires under study are extremely small: Their diameters are just twenty nanometres (millionths of a millimetre). The tiny structures demonstrate fascinating properties, and in particular they are extremely strong. "In principle these nanowires can be thousandfold stronger than millimetre-sized metal bodies" says project leader, Prof. Jörg Weißmüller.

The scientist leads the Institute for Material Physics and Material Engineering at the TUHH as well as the "Hybrid Material Systems" group at HZG’s Institute for Materials Research. "This makes them very interesting for future applications." For instance, lighter and therefore more energy-efficient automobiles built from such high-tech materials could be envisaged.

The detail of how the nanostructures behave is not yet very accurately known in the scientific community. Most insight on mechanisms comes from computer simulations. Here, the experts assemble dozens of atoms into small, virtual metal particles with which they then carry out real experiments in supercomputers. These computer experiments yield exciting and plausible results.

However, experimental verification is often missing. The reason: It is extremely hard to characterize the mechanical properties of nanoparticles. The classic material research testing machines are poorly adopted to the task – they are massive presses with braces that can be as thick as thighs.

Weißmüller and his colleagues succeeded in developing a clever experimental set up – a mechanical test procedure for nanowires. The trick: They combine billions of gold nanowires into a porous, sponge-like network consisting of one quarter metal and three quarters air. Millimetre-sized test cylinders can be produced from this nanoporous gold – large enough for a conventional testing machine: A punch presses on the cylinder, and in the process all the nanowires are simultaneously deformed.

The experts can subsequently deduce the behaviour of the individual wires. In addition, the test piece is immersed in an acid solution acting as an electrolyte and an electrical voltage can be applied. Thereby the researchers can systematically manipulate the surface phenomena which are quintessential for the nano-cosmos. In some instances, surface contributions can even be repeatedly switched between “on” and “off”.

"In one case, with our experiments we were able for the first time to confirm the results of the computer simulations", says Weißmüller. "In another case we were able to show that it is quite different to what was originally thought." In their article in "Nano Letters" the researchers were able to prove that, as suspected, it is the forces on the surfaces of the nanoparticles which lead to the enormous strength.

The reason: In a large macroscopic body the vast majority of atoms are inside the crystal, only a fraction is found on the surface. With nanoparticles, by contrast, a large fraction of the atoms sit in the surface. As a result, the surface effects are decisive for the mechanical behaviour. The HZG researchers were now able to demonstrate this by weakening and even switching off certain surface effects in their experiments.

In their current publication in "Nature Communications", the specialists succeeded in shedding light more closely on the nature of the surface effects and determining the influence of two different phenomena. "We had a surprize here", said Weißmüller's colleague, Dr. Nadiia Mameka. "Our results have disproved the interpretation of previous computer experiments." As it runs out, it is not--as assumed--the force acting between the surface atoms which determines the mechanical properties of the nanoparticles. "Instead it is likely to be the energy in the surface which is responsible for the strength“, explained Mameka. "This is new and had not been expected."

In the future, such knowledge could help in the development of innovative materials based on nanotechnology – highly interesting, perhaps, for lightweight construction but also for materials with built-in sensor properties. "Due to the fact that we better understand the fundamental properties of these nanowires" emphasized Jörg Weißmüller, "we are better able to target the development of future materials."

The publications:

Nano Letters, DOI:10.1021/acs.nanolett.7b02950 Nano Lett. 2017, 17, 6258 − 6266

Nature Communications: DOI: 10.1038/s41467-017-01434-2.

Weitere Informationen:

http://www.nature.com/ncomms Nature Communications DOI: 10.1038/s41467-017-01434-2
http://pubsdc3.acs.org/doi/pdf/10.1021/acs.nanolett.7b02950 Nano Letters

Dr. Torsten Fischer | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

More articles from Materials Sciences:

nachricht Game-changing finding pushes 3D-printing to the molecular limit
20.06.2018 | University of Nottingham

nachricht Creating a new composite fuel for new-generation fast reactors
20.06.2018 | Lobachevsky University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Better model of water under extreme conditions could aid understanding of Earth's mantle

21.06.2018 | Earth Sciences

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>