Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Successful Mechanical Testing of Nanowires

07.12.2017

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced reliability and for energy-efficient automobiles. The origin of the exceptional properties of the tiny metallic bodies remains to be understood in detail.


Model of nanoporous gold magnified thousands of times and manufactured in a 3-D printer. Good to see: porous structure of the nanowires.

HZG/Rasmus Lippels

Using innovative experimental approaches, researchers at Helmholtz-Zentrum Geesthacht (HZG) and Hamburg University of Technology (TUHH) have found what makes the nanostructures so strong.

Their findings have been published in two renowned scientific journals – in "Nano Letters" and currently in "Nature Communications". The results could promote the development of future novel lightweight materials.

The metal wires under study are extremely small: Their diameters are just twenty nanometres (millionths of a millimetre). The tiny structures demonstrate fascinating properties, and in particular they are extremely strong. "In principle these nanowires can be thousandfold stronger than millimetre-sized metal bodies" says project leader, Prof. Jörg Weißmüller.

The scientist leads the Institute for Material Physics and Material Engineering at the TUHH as well as the "Hybrid Material Systems" group at HZG’s Institute for Materials Research. "This makes them very interesting for future applications." For instance, lighter and therefore more energy-efficient automobiles built from such high-tech materials could be envisaged.

The detail of how the nanostructures behave is not yet very accurately known in the scientific community. Most insight on mechanisms comes from computer simulations. Here, the experts assemble dozens of atoms into small, virtual metal particles with which they then carry out real experiments in supercomputers. These computer experiments yield exciting and plausible results.

However, experimental verification is often missing. The reason: It is extremely hard to characterize the mechanical properties of nanoparticles. The classic material research testing machines are poorly adopted to the task – they are massive presses with braces that can be as thick as thighs.

Weißmüller and his colleagues succeeded in developing a clever experimental set up – a mechanical test procedure for nanowires. The trick: They combine billions of gold nanowires into a porous, sponge-like network consisting of one quarter metal and three quarters air. Millimetre-sized test cylinders can be produced from this nanoporous gold – large enough for a conventional testing machine: A punch presses on the cylinder, and in the process all the nanowires are simultaneously deformed.

The experts can subsequently deduce the behaviour of the individual wires. In addition, the test piece is immersed in an acid solution acting as an electrolyte and an electrical voltage can be applied. Thereby the researchers can systematically manipulate the surface phenomena which are quintessential for the nano-cosmos. In some instances, surface contributions can even be repeatedly switched between “on” and “off”.

"In one case, with our experiments we were able for the first time to confirm the results of the computer simulations", says Weißmüller. "In another case we were able to show that it is quite different to what was originally thought." In their article in "Nano Letters" the researchers were able to prove that, as suspected, it is the forces on the surfaces of the nanoparticles which lead to the enormous strength.

The reason: In a large macroscopic body the vast majority of atoms are inside the crystal, only a fraction is found on the surface. With nanoparticles, by contrast, a large fraction of the atoms sit in the surface. As a result, the surface effects are decisive for the mechanical behaviour. The HZG researchers were now able to demonstrate this by weakening and even switching off certain surface effects in their experiments.

In their current publication in "Nature Communications", the specialists succeeded in shedding light more closely on the nature of the surface effects and determining the influence of two different phenomena. "We had a surprize here", said Weißmüller's colleague, Dr. Nadiia Mameka. "Our results have disproved the interpretation of previous computer experiments." As it runs out, it is not--as assumed--the force acting between the surface atoms which determines the mechanical properties of the nanoparticles. "Instead it is likely to be the energy in the surface which is responsible for the strength“, explained Mameka. "This is new and had not been expected."

In the future, such knowledge could help in the development of innovative materials based on nanotechnology – highly interesting, perhaps, for lightweight construction but also for materials with built-in sensor properties. "Due to the fact that we better understand the fundamental properties of these nanowires" emphasized Jörg Weißmüller, "we are better able to target the development of future materials."

The publications:

Nano Letters, DOI:10.1021/acs.nanolett.7b02950 Nano Lett. 2017, 17, 6258 − 6266

Nature Communications: DOI: 10.1038/s41467-017-01434-2.

Weitere Informationen:

http://www.nature.com/ncomms Nature Communications DOI: 10.1038/s41467-017-01434-2
http://pubsdc3.acs.org/doi/pdf/10.1021/acs.nanolett.7b02950 Nano Letters

Dr. Torsten Fischer | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

More articles from Materials Sciences:

nachricht One in 5 materials chemistry papers may be wrong, study suggests
15.12.2017 | Georgia Institute of Technology

nachricht Scientists channel graphene to understand filtration and ion transport into cells
11.12.2017 | National Institute of Standards and Technology (NIST)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>