Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Structural origin of glass transition

24.06.2015

Evolution of structural fluctuations in a supercooled liquid

A University of Tokyo research group has demonstrated through computer simulations that the enhancement of fluctuations in a liquid’s structure plays an important role as a liquid becomes a solid near the glass-transition point, a temperature below the melting point.


Snapshot of correlation of particle structure and dynamics at density of 0.97. Disks are colored according to the following criteria: white, low mobility and high order; black, high mobility and low order; cyan, low mobility and low order; and magenta, high mobility and high order.

Copyright : © 2015 John Russo, Hajime Tanaka.

This result increases our understanding of the origin of the glass transition and is expected to shed new light on the structure of liquids, thought until now to have been uniform and random.

Normally, a liquid changes to a solid when its temperature becomes lower than the melting point. However, some materials remain liquid even below the melting point, finally solidifying with further cooling (supercooling) at what is called the glass-transition point.

Despite intensive research over the years, its physical mechanism has remained elusive. One possibility is that increasing structural order develops in a supercooled liquid upon cooling, increasing the size of that structure and thus slowing down the dynamics and leading to the glass transition.

Because the structure of liquids that undergo a glass transition is disordered, it was difficult to detect fluctuations of such a structure, but a new method has been proposed recently.

This method does not depend on the type of liquid structure and has attracted much attention as it may enable extraction of structure size, which is key to understanding slow dynamics, for all liquids.

The research group of Professor Hajime Tanaka and Project Research Associate John Russo at the Institute of Industrial Science, the University of Tokyo, were only able to retrieve the separation distance of two particles using this method, finding instead that this method fails at extracting the correlation between more than two particles (many-body correlations) which are key for understanding the glass transition.

In a liquid composed of disk-shaped particles that do not deform no matter how much force is applied (a hard disc liquid), it is apparent that the dynamics of the liquid are dominated by a hexagonal lattice structure that is impossible to extract using this method.

“These findings not only support the physical mechanism proposed by this group that slow glassy dynamics is a consequence of the development of structural fluctuations in a supercooled liquid, but also provides a new insight into the liquid phase, which was believed to be uniform and random, and leads to a deeper understanding of the very nature of the supercooled liquid state,” says Professor Tanaka.


Associated links
UTokyo Research article

Euan McKay | ResearchSEA
Further information:
http://www.researchsea.com

More articles from Materials Sciences:

nachricht New biomaterial could replace plastic laminates, greatly reduce pollution
21.09.2017 | Penn State

nachricht Stopping problem ice -- by cracking it
21.09.2017 | Norwegian University of Science and Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

Hope to discover sure signs of life on Mars? New research says look for the element vanadium

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>