Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Structural origin of glass transition

24.06.2015

Evolution of structural fluctuations in a supercooled liquid

A University of Tokyo research group has demonstrated through computer simulations that the enhancement of fluctuations in a liquid’s structure plays an important role as a liquid becomes a solid near the glass-transition point, a temperature below the melting point.


Snapshot of correlation of particle structure and dynamics at density of 0.97. Disks are colored according to the following criteria: white, low mobility and high order; black, high mobility and low order; cyan, low mobility and low order; and magenta, high mobility and high order.

Copyright : © 2015 John Russo, Hajime Tanaka.

This result increases our understanding of the origin of the glass transition and is expected to shed new light on the structure of liquids, thought until now to have been uniform and random.

Normally, a liquid changes to a solid when its temperature becomes lower than the melting point. However, some materials remain liquid even below the melting point, finally solidifying with further cooling (supercooling) at what is called the glass-transition point.

Despite intensive research over the years, its physical mechanism has remained elusive. One possibility is that increasing structural order develops in a supercooled liquid upon cooling, increasing the size of that structure and thus slowing down the dynamics and leading to the glass transition.

Because the structure of liquids that undergo a glass transition is disordered, it was difficult to detect fluctuations of such a structure, but a new method has been proposed recently.

This method does not depend on the type of liquid structure and has attracted much attention as it may enable extraction of structure size, which is key to understanding slow dynamics, for all liquids.

The research group of Professor Hajime Tanaka and Project Research Associate John Russo at the Institute of Industrial Science, the University of Tokyo, were only able to retrieve the separation distance of two particles using this method, finding instead that this method fails at extracting the correlation between more than two particles (many-body correlations) which are key for understanding the glass transition.

In a liquid composed of disk-shaped particles that do not deform no matter how much force is applied (a hard disc liquid), it is apparent that the dynamics of the liquid are dominated by a hexagonal lattice structure that is impossible to extract using this method.

“These findings not only support the physical mechanism proposed by this group that slow glassy dynamics is a consequence of the development of structural fluctuations in a supercooled liquid, but also provides a new insight into the liquid phase, which was believed to be uniform and random, and leads to a deeper understanding of the very nature of the supercooled liquid state,” says Professor Tanaka.


Associated links
UTokyo Research article

Euan McKay | ResearchSEA
Further information:
http://www.researchsea.com

More articles from Materials Sciences:

nachricht A new tool for discovering nanoporous materials
23.05.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Did you know that packaging is becoming intelligent through flash systems?
23.05.2017 | Heraeus Noblelight GmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>