Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Strongest Ever Spin-Phonon Coupling Observed

18.01.2016

The Study May Contribute to the Development of High-Performance Functional Materials in Information & Communication and Electronics.

A research team led by Kazunari Yamaura, chief researcher, Superconducting Properties Unit, National Institute for Materials Science (NIMS), Japan, and Dr. Stuart Calder and others at the Oak Ridge National Laboratory in the United States, jointly demonstrated that the strongest ever spin-phonon coupling was observed in osmium oxide synthesized for the first time in the world by NIMS in 2009. A general belief is that the stronger the coupling between various properties in a material is, the more advantageous it is in the development of a new functional material. As such, the osmium oxide may serve as a candidate for a next-generation functional material useful in the areas of information & technology and electronics.


Figure: (a) Schematic of an osmium oxide (NaOsO3) crystal structure and (b) an optical microscope image of the single crystal.

Copyright : National Institute for Materials Science

While platinum group elements and their compounds are widely used as catalysts, their other functions have not been explored very much, partly because they are expensive. Amid the situation, the NIMS research team discovered that the osmium oxide it synthesized in 2009 exhibits an unusual magnetic transition at about 140°C, which is higher than room temperature, and had been taking on the challenge of pioneering non-catalytic, industrial functions of the material.

Based on the recent observation of spin-phonon coupling in the osmium oxide, the team found that the coupling was the strongest ever observed. The strong spin-phonon coupling may be caused by the outermost orbitals of osmium atoms as they are greatly extended outward in space, in the solid oxide. The fact that this structural characteristic is common to all platinum group elements suggests that compounds based on these elements other than osmium are also likely to be associated with strong spin-phonon coupling.

Spin-phonon coupling directly represents the strength of interaction between magnetism (spin) and the crystal lattice system (phonon). Recent studies indicate that the stronger the spin-phonon interaction is, the more favorable it is in the development of new materials—such as a multiferroic material, for example—in which the coupling of magnetism and the lattice system has great importance. Expectations are rising for the multiferroic material as a candidate for an innovative functional material, as it may contribute to the realization of power-saving high-density information-recording elements and power-saving ultra-high-speed logic elements. This study is considered to be a major step toward this endeavor.

This research was carried out in the framework of the NIMS 3rd Mid-Term Program project on advanced superconducting materials.

(This study was published in Nature Communications on Nov. 26, 2015: S. Calder, J.H. Lee, M.B. Stone, M.D. Lumsden, J.C. Lang, M. Feygenson, Z. Zhao, J.-Q. Yan, Y.G. Shi, Y.S. Sun, Y. Tsujimoto, K. Yamaura, and A.D. Christianson: “Enhanced spin-phonon-electronic coupling in a 5d oxide”: doi:10.1038/ncomms9916)


Associated links
Original article from National Institute for Materials Science

Mikiko Tanifuji | Research SEA
Further information:
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Physics, photosynthesis and solar cells
01.12.2016 | University of California - Riverside

nachricht New process produces hydrogen at much lower temperature
01.12.2016 | Waseda University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>