Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stronger turbine blades with molybdenum silicides

26.09.2016

Researchers at Kyoto University have found that molybdenum silicides can improve the efficiency of turbine blades in ultrahigh-temperature combustion systems.

Gas turbines are the engines that generate electricity in power plants. The operating temperatures of their combustion systems can exceed 1600 °C. The nickel-based turbine blades used in these systems melt at temperatures 200 °C lower and thus require air-cooling to function. Turbine blades made out of materials with higher melting temperatures would require less fuel consumption and lead to lower CO2 emissions.


Figure (left): Electron micrographs of directionally solidified (DS) ingots of binary composites. (right): Temperature dependence of yield stress of DS MoSi2/Mo5Si3 eutectic composites and some high-temperature materials. ©2016 Hirotaka Matsunoshita, Yuta Sasai, Kosuke Fujiwara, Kyosuke Kishida and Haruyuki Inui.

Materials scientists at Japan’s Kyoto University investigated the properties of various compositions of molybdenum silicides, with and without additional ternary elements.

Previous research showed that fabricating molybdenum silicide-based composites by pressing and heating their powders – known as powder metallurgy – improved their resistance to fracturing at ambient temperatures but lowered their high-temperature strength, due to the development of silicon dioxide layers within the material.

The Kyoto University team fabricated their molybdenum silicide-based materials using a method known as “directional solidification,” in which molten metal progressively solidifies in a certain direction.

The team found that a homogeneous material could be formed by controlling the solidification rate of the molybdenum silicide-based composite during fabrication and by adjusting the amount of the ternary element added to the composite.

The resulting material starts deforming plastically under uniaxial compression above 1000 °C. Also, the material’s high-temperature strength increases through microstructure refinement. Adding tantalum to the composite is more effective than adding vanadium, niobium or tungsten for improving the strength of the material at temperatures around 1400 °C. The alloys fabricated by the Kyoto University team are much stronger at high temperatures than modern nickel-based superalloys as well as recently developed ultrahigh-temperature structural materials, the researchers report in their study published in the journal Science and Technology of Advanced Materials.


For further information please contact:

Hirotaka Matsunoshita, Yuta Sasai, Kosuke Fujiwara, Kyosuke Kishida and Haruyuki Inui*:
(Department of Materials Science and Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan, Hirotaka Matsunoshita, Kyosuke Kishida and Haruyuki Inui are also at the Center for Elements Strategy Initiative for Structural Materials (ESISM), Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
*E-mail: inui.haruyuki.3z@kyoto-u.ac.jp)


Article information
“Plastic deformation of directionally-solidified ingots of binary and some ternary MoSi2/Mo5Si3 eutectic composites”,
Hirotaka Matsunoshita, Yuta Sasai, Kosuke Fujiwara, Kyosuke Kishida and Haruyuki Inui:
Science and Technology of Advanced Materials Vol. 17 (2016) p. 1218248

Accepted author version posted online: 28 Jul 2016,
http://tandfonline.com/doi/abs/10.1080/14686996.2016.1218248
Published online: 08 Sep 2016
http://tandfonline.com/doi/full/10.1080/14686996.2016.1218248

Journal Information
Science and Technology of Advanced Materials (STAM) is the leading open access, international journal for outstanding research articles across all aspects of materials science. Our audience is the international materials community across the disciplines of materials science, physics, chemistry, biology as well as engineering.

The journal covers a broad spectrum of materials science research including functional materials, synthesis and processing, theoretical analyses, characterization and properties of materials. Emphasis is placed on the interdisciplinary nature of materials science and issues at the forefront of the field, such as energy and environmental issues, as well as medical and bioengineering applications


http://tandfonline.com/loi/tsta20#.VrgX82fotYU

For more information about the journal Science and Technology of Advanced Materials, contact

Mikiko Tanifuji
Publishing Director
Science and Technology of Advanced Materials
Email: TANIFUJI.Mikiko@nims.go.jp

Associated links

Mikiko Tanifuji | Research SEA
Further information:
http://www.researchsea.com

Further reports about: Materials Science blades materials molybdenum turbine blades

More articles from Materials Sciences:

nachricht Melting solid below the freezing point
23.01.2017 | Carnegie Institution for Science

nachricht An innovative high-performance material: biofibers made from green lacewing silk
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>