Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stronger turbine blades with molybdenum silicides

26.09.2016

Researchers at Kyoto University have found that molybdenum silicides can improve the efficiency of turbine blades in ultrahigh-temperature combustion systems.

Gas turbines are the engines that generate electricity in power plants. The operating temperatures of their combustion systems can exceed 1600 °C. The nickel-based turbine blades used in these systems melt at temperatures 200 °C lower and thus require air-cooling to function. Turbine blades made out of materials with higher melting temperatures would require less fuel consumption and lead to lower CO2 emissions.


Figure (left): Electron micrographs of directionally solidified (DS) ingots of binary composites. (right): Temperature dependence of yield stress of DS MoSi2/Mo5Si3 eutectic composites and some high-temperature materials. ©2016 Hirotaka Matsunoshita, Yuta Sasai, Kosuke Fujiwara, Kyosuke Kishida and Haruyuki Inui.

Materials scientists at Japan’s Kyoto University investigated the properties of various compositions of molybdenum silicides, with and without additional ternary elements.

Previous research showed that fabricating molybdenum silicide-based composites by pressing and heating their powders – known as powder metallurgy – improved their resistance to fracturing at ambient temperatures but lowered their high-temperature strength, due to the development of silicon dioxide layers within the material.

The Kyoto University team fabricated their molybdenum silicide-based materials using a method known as “directional solidification,” in which molten metal progressively solidifies in a certain direction.

The team found that a homogeneous material could be formed by controlling the solidification rate of the molybdenum silicide-based composite during fabrication and by adjusting the amount of the ternary element added to the composite.

The resulting material starts deforming plastically under uniaxial compression above 1000 °C. Also, the material’s high-temperature strength increases through microstructure refinement. Adding tantalum to the composite is more effective than adding vanadium, niobium or tungsten for improving the strength of the material at temperatures around 1400 °C. The alloys fabricated by the Kyoto University team are much stronger at high temperatures than modern nickel-based superalloys as well as recently developed ultrahigh-temperature structural materials, the researchers report in their study published in the journal Science and Technology of Advanced Materials.


For further information please contact:

Hirotaka Matsunoshita, Yuta Sasai, Kosuke Fujiwara, Kyosuke Kishida and Haruyuki Inui*:
(Department of Materials Science and Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan, Hirotaka Matsunoshita, Kyosuke Kishida and Haruyuki Inui are also at the Center for Elements Strategy Initiative for Structural Materials (ESISM), Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
*E-mail: inui.haruyuki.3z@kyoto-u.ac.jp)


Article information
“Plastic deformation of directionally-solidified ingots of binary and some ternary MoSi2/Mo5Si3 eutectic composites”,
Hirotaka Matsunoshita, Yuta Sasai, Kosuke Fujiwara, Kyosuke Kishida and Haruyuki Inui:
Science and Technology of Advanced Materials Vol. 17 (2016) p. 1218248

Accepted author version posted online: 28 Jul 2016,
http://tandfonline.com/doi/abs/10.1080/14686996.2016.1218248
Published online: 08 Sep 2016
http://tandfonline.com/doi/full/10.1080/14686996.2016.1218248

Journal Information
Science and Technology of Advanced Materials (STAM) is the leading open access, international journal for outstanding research articles across all aspects of materials science. Our audience is the international materials community across the disciplines of materials science, physics, chemistry, biology as well as engineering.

The journal covers a broad spectrum of materials science research including functional materials, synthesis and processing, theoretical analyses, characterization and properties of materials. Emphasis is placed on the interdisciplinary nature of materials science and issues at the forefront of the field, such as energy and environmental issues, as well as medical and bioengineering applications


http://tandfonline.com/loi/tsta20#.VrgX82fotYU

For more information about the journal Science and Technology of Advanced Materials, contact

Mikiko Tanifuji
Publishing Director
Science and Technology of Advanced Materials
Email: TANIFUJI.Mikiko@nims.go.jp

Associated links

Mikiko Tanifuji | Research SEA
Further information:
http://www.researchsea.com

Further reports about: Materials Science blades materials molybdenum turbine blades

More articles from Materials Sciences:

nachricht New design improves performance of flexible wearable electronics
23.06.2017 | North Carolina State University

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>