Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Strength and ductility for alloys

27.05.2016

For the steel industry, there may be a way out of the dilemma that has existed since people began processing metal. Scientists from the Max-Planck-Institut für Eisenforschung in Düsseldorf (Germany) are presenting a new type of metallic material that is extremely strong, but simultaneously ductile. Up until now, one material property could only be improved at the expense of the other - something that is being changed by the Düsseldorf-based researchers, who are entering new terrain in the development of metallic materials. Their work is thus contributing to the future design of metallic components with thinner sheets, and thereby helping to save resources.

Ideally, steels and steel-related alloys should be capable of both properties: they should not fragment, for example during processing in a mill or as car bodies involved in an accident. In other words, they must be “ductile”, as materials scientists refer to it.


A strong alloy made of iron, manganese, cobalt and chrome becomes ductile because it can have two coexisting crystal structures, and one structure can transform into the other.

Nature 2016 / Max-Planck-Institut für Eisenforschung GmbH

However, they also need to be strong so that they do not warp or break when subjected to weak forces. A team headed by Dierk Raabe, director at the Max-Planck-Institut für Eisenforschung, and Cemal Cem Tasan, formerly head of a research group at this Institute and now professor at the Massachusetts Institute of Technology in the US, has now succeeded in combining both properties in one material. To date, extremely ductile metallic materials were not particularly strong and vice versa.

“We pursued a new strategy in the development of this material, which generally opens up new possibilities for the design of metallic materials,” says Dierk Raabe. The team began at a type of material that has been the subject of extensive testing by materials scientists in recent years, but which was too brittle for many applications up until now: alloys in which metallurgists combine similar quantities of typically five or more different metals.

Atomic disorder enables high-strength alloys

As the atoms of the different elements are distributed along the positions in the crystal lattices of these materials without any identifiable order and the entropy is, to a certain extent, a measure for the disorder, the materials are called high-entropy alloys. Such materials can be particularly strong because the disorder of the numerous different atoms in a structure makes it difficult for dislocations to move.

Dislocations are defects in the crystal lattice that move through a crystal when a material becomes deformed. However, there has been one disadvantage to the high strength of the alloys with atomic disorder till now: when such a material gives way under pressure, it is usually brittle.

Steels that mainly contain iron, usually another main component and small quantities of other elements like carbon, vanadium or chrome, are, on the other hand, often ductile. They are not brittle; however, up until now they have not been strong enough to enable, for example, the construction of car bodies with thinner sheets.

In the crystals of steels, the atoms are more or less regularly arranged. Steels become particularly ductile though if they can switch from one structure to another. This is because this process swallows energy, which can then no longer initiate any damage in the material. In a car body or other steel components, tiny areas then alternate with the two different atom arrangements.

The change in the crystal structure makes the material ductile

It was precisely this coexistence of the different crystal structures that was detrimental to the high-entropy alloys – thus far. “We have now turned this conception on its head, as recent studies have shown that this is not the important factor,” says Zhiming Li, who made this scientific turnaround the topic of his project. Together with his colleagues, Li searched for a material that is, on the one hand, as strong as a high-entropy alloy, but, like particularly ductile steels, has two coexisting crystal structures. The search produced an alloy made from 50 per cent iron, 30 per cent manganese and 10 per cent respectively of cobalt and chrome.

“With this alloy, we have shown that our concept works,” says Raabe. “If we further improve the microstructure and the composition, we can even further enhance the strength and ductility.” This is precisely the area the researchers are now working on. This means that they could, once and for all, solve the metal-processing industry’s dilemma of having to choose between strong or ductile materials.

The metallic materials from the Düsseldorf-based materials forge could be processed just as easily and cost-efficiently as a particularly ductile steel and absorb as much impact energy in an accident when incorporated in the body of a car. At the same time, the material would be strong enough that thin and thus low-cost and resource-conserving metal sheets do not give way when subjected to a weak force.

Author: Peter Hergersberg, Max Planck Society

Weitere Informationen:

http://www.mpie.de/2281/en

Yasmin Ahmed Salem | Max-Planck-Institut für Eisenforschung GmbH

More articles from Materials Sciences:

nachricht Magnesium magnificent for plasmonic applications
23.05.2018 | Rice University

nachricht New concept for structural colors
18.05.2018 | Technische Universität Hamburg-Harburg

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Building a brain, cell by cell: Researchers make a mini neuron network (of two)

23.05.2018 | Life Sciences

One-way roads for spin currents

23.05.2018 | Physics and Astronomy

A simple mechanism could have been decisive for the development of life

23.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>