Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Slicing through materials with a new X-ray imaging technique

12.08.2016

Images reveal battery materials' chemical reactions in 5 dimensions -- 3-D space plus time and energy

Researchers at the U.S. Department of Energy's Brookhaven National Laboratory have created a new imaging technique that allows scientists to probe the internal makeup of a battery during charging and discharging using different x-ray energies while rotating the battery cell. The technique produces a three-dimensional chemical map and lets the scientists track chemical reactions in the battery over time in working conditions. Their work is published in the August 12 issue of Nature Communications.


The chemical phase within the battery evolves as the charging time increases. The cut-away views reveal a change from anisotropic to isotropic phase boundary motion.

Credit: Jun Wang

Getting an accurate image of the activity inside a battery as it charges and discharges is a difficult task. Often even x-ray images don't provide researchers with enough information about the internal chemical changes in a battery material because two-dimensional images can't separate out one layer from the next. Imagine taking an x-ray image of a multi-story office building from above. You'd see desks and chairs on top of one another, several floors of office spaces blending into one picture. But it would be difficult to know the exact layout of any one floor, let alone to track where one person moved throughout the day.

"It's very challenging to carry out in-depth study of in situ energy materials, which requires accurately tracking chemical phase evolution in 3D and correlating it to electrochemical performance," said Jun Wang, a physicist at the National Synchrotron Light Source II, who led the research.

Using a working lithium-ion battery, Wang and her team tracked the phase evolution of the lithium iron phosphate within the electrode as the battery charged. They combined tomography (a kind of x-ray imaging technique that displays the 3D structure of an object) with X-ray Absorption Near Edge Structure (XANES) spectroscopy (which is sensitive to chemical and local electronic changes). The result was a "five dimensional" image of the battery operating: a full three-dimensional image over time and at different x-ray energies.

To make this chemical map in 3D, they scanned the battery cell at a range of energies that included the "x-ray absorption edge" of the element of interest inside the electrode, rotating the sample a full 180 degrees at each x-ray energy, and repeating this procedure at different stages as the battery was charging. With this method, each three-dimensional pixel-called a voxel-produces a spectrum that is like a chemical-specific "fingerprint" that identifies the chemical and its oxidation state in the position represented by that voxel. Fitting together the fingerprints for all voxels generates a chemical map in 3D.

The scientists found that, during charging, the lithium iron phosphate transforms into iron phosphate, but not at the same rate throughout the battery. When the battery is in the early stage of charging, this chemical evolution occurs in only certain directions. But as the battery becomes more highly charged, the evolution proceeds in all directions over the entire material.

"Were these images to have been taken with a standard two-dimensional method, we wouldn't have been able to see these changes," Wang said.

"Our unprecedented ability to directly observe how the phase transformation happens in 3D reveals accurately if there is a new or intermediate phase during the phase transformation process. This method gives us precise insight into what is happening inside the battery electrode and clarifies previous ambiguities about the mechanism of phase transformation," Wang said.

Wang said modeling will help the team explore the way the spread of the phase change occurs and how the strain on the materials affects this process.

This work was completed at the now-closed National Synchrotron Light Source (NSLS), which housed a transmission x-ray microscope (TXM) developed by Wang using DOE funds made available through American Recovery and Reinvestment Act of 2009. This TXM instrument will be relocated to Brookhaven's new light source, NSLS-II, which produces x-rays 10,000 times brighter than its predecessor. Both NSLS and NSLS-II are DOE Office of Science User Facilities.

"At NSLS-II, this work can be done incredibly efficiently," she said. "The stability of the beam lends itself to good tomography, and the flux is so high that we can take images more quickly and catch even faster reactions."

###

This work was supported by the DOE Office of Science.

Brookhaven National Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Media Contact

Chelsea Whyte
cwhyte@bnl.gov
631-344-8671

 @brookhavenlab

http://www.bnl.gov 

Chelsea Whyte | EurekAlert!

More articles from Materials Sciences:

nachricht Argon is not the 'dope' for metallic hydrogen
24.03.2017 | Carnegie Institution for Science

nachricht Researchers make flexible glass for tiny medical devices
24.03.2017 | Brigham Young University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>