Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Single-Crystal Phosphors Suitable for Ultra-Bright, High-Power White Light Sources

31.08.2015

Researchers in Japan successfully developed single-crystal phosphors that use a blue LD (laser diode) as an excitation light source, are suitable for ultra-bright, high-power white lighting, and have outstanding temperature characteristics.

The Optical Single Crystals Group at National Institute for Materials Science (NIMS) led by Group Leader Kiyoshi Shimamura and Senior Researcher E. Garcia Villora, in collaboration with Tamura Corporation (President, Naoki Tamura) and Koha Co., Ltd. (President, Yasuhiro Nakashima), successfully developed single-crystal phosphors (based on (Y1-xLux)3Al5O12 oxide-garnets) that use a blue LD (laser diode) as an excitation light source, are suitable for ultra-bright, high-power white lighting, and have outstanding temperature characteristics.


YAG single-crystal phosphor ingot. Image copyright: NIMS

In line with environmentally conscious efforts to promote power-saving and mercury-free products, white lighting that uses blue LEDs as an excitation light source has grown rapid in popularity in recent years. At the same time, products that use blue LDs as an excitation light source have also been commercialized to meet the needs of certain light-p rojectors and car headlights.

These require a high-brightness that is difficult to attain with LED light sources. Due to its optical properties, LD light can be easily collected with a lens or mirror, and it is feasible to focus 100-watt-equivalent LD light on an area as small as several millimeters in diameter.

However, as the power density of the LD excitation light increases, the heat generated by the lighting device also increases proportionally. The use of conventional phosphors, with low thermal conductivities and a decreasing internal quantum efficiency with the temperature, requires complex cooling techniques and critically limits the applicable LD power. Further, non-oxide based powder phosphors degrade irreversibly with the temperature.

In this study, the developed single-crystal phosphors, grown from the melt by the Czochralski technique, exhibit superior temperature characteristics, overcoming mentioned difficulties. On the one hand, due to the higher thermal conductivity (over two orders of magnitude) they can be cooled much more efficiently, avoiding overheating and enabling downsizing and cost reduction of lighting products.

On the other hand, their quantum efficiency does not drop with the temperature, exhibiting an efficiency over 0.9 till 300 °C in either plate or powder form. These two features, high thermal conductivity and quantum efficiency, are so remarkable that when the emission of conventional phosphors is already quenched by the temperature rise, under the same nominal conditions the temperature of single-crystal phosphors barely increases. Thus, in contrast with conventional powder phosphors, single-crystal phosphors will allow the fabrication of brighter and more powerful lighting products.

Based on this study, we have already acquired two patents in Japan, and have applied for five additional patents in Japan and abroad. We are aiming at stablishing the growth methods for the efficient mass production of single-crystal phosphors for laser lighting products such as laser projectors and laser headlights by the end of FY2015 in collaboration with Tamura Corporation.


Associated links
Original press release from NIMS

Mikiko Tanifuji | ResearchSea
Further information:
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Reliable molecular toggle switch developed
30.03.2017 | Karlsruher Institut für Technologie (KIT)

nachricht Researchers shoot for success with simulations of laser pulse-material interactions
29.03.2017 | DOE/Oak Ridge National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>