Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Similar Nanomaterials behave differently. Why?


Nanotubes can be used for many things: electrical circuits, batteries, innovative fabrics and more. Scientists have noted, however, that nanotubes, whose structures appear similar, can actually exhibit different properties, with important consequences in their applications.

Carbon nanotubes and boron nitride nanotubes, for example, while nearly indistinguishable in their structure, can be different when it comes to friction. A study conducted by SISSA/CNR-IOM and Tel Aviv University created computer models of these crystals and studied their characteristics in detail and observed differences related to the material’s chirality. The study was published in Nature Nanotechnology.

Superposition of two double-wall nanotubes with different structural conformation following the relative chiralities: monochiral (internal nanotube) and polychiral (external nanotube) Credits SISSA/CNR IOM

"We began with a series of experimental observations which showed that very similar nanotubes exhibit different frictional properties, with intensities ranging up to two orders of magnitude," says Roberto Guerra, a researcher at CNR-IOM and the International School for Advanced Studies (SISSA) in Trieste, first author of the study.

"This led us to hypothesize that the chirality of the materials may play a role in this phenomenon." The study involving also Andrea Vanossi (CNR-IOM) and Erio Tosatti (SISSA), was conducted in collaboration with the University of Tel Aviv.

For materials, such as those used in the study, chirality is linked to the three-dimensional arrangement of the weft that form the nanotube. "If we wrap a sheet of lined paper around itself to form a tube, the angle that the lines form with the axis of the tube determines its chirality,” says Guerra.

"In our work we reconstructed the behavior of double-walled nanototubes, which can be imagined as two tubes of slightly different diameters, one inside the other. We observed that the difference in chirality between the inner tube and the outer tube has a remarkable effect on the three-dimensional shape of the nanotubes."

A polygonal tube

"If we continue with the paper metaphor, the difference in orientation between the lattice on the inner tube and the outer tube determine to what extent, and, in what way, planar regions (faces) along the tube will form", says Guerra. To better understand what is meant by "faces", imagine a cross section of the tube, which is polygonal rather than perfectly circular.

"The smaller the difference in chirality, the clearer and more obvious the faces", concludes Guerra. If, however, the difference in chirality becomes too large, the faces disappear and the nanotubes take on the classic cylindrical shape.

The faces appear spontaneously depending on the characteristics of the material. Double-walled carbon nanotubes tend to form with a greater difference in internal and external chirality compared to boron nitride. Therefore, the former usually maintains a cylindrical shape that allows for less friction. In further studies, Guerra and colleagues intend to work directly on measuring the level of friction between nanotubes.

Federica Sgorbissa | AlphaGalileo

More articles from Materials Sciences:

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

nachricht Study explains strength gap between graphene, carbon fiber
20.10.2016 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>