Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Silk sensor could speed development of new infrastructure, aerospace & consumer materials

20.03.2017

Consumers want fuel-efficient vehicles and high-performance sporting goods, municipalities want weather-resistant bridges, and manufacturers want more efficient ways to make reliable cars and aircraft.

What's needed are new lightweight, energy-saving composites that won't crack or break even after prolonged exposure to environmental or structural stress. To help make that possible, researchers working at the National Institute of Standards and Technology (NIST) have developed a way to embed a nanoscale damage-sensing probe into a lightweight composite made of epoxy and silk.


These are examples of the silk used in experiments to detect damage in composites, shown under black light. (Left) Ordinary fibroin of the Bombyx mori silk worm. The observed fluorescence is the result of molecules already present in the protein structure of the fiber. (Middle) Mechanophore-labeled silk fiber fluoresces in response to damage or stress. (Right) Control sample without the mechanophore.

Credit: Chelsea Davis and Jeremiah Woodcock/NIST

The probe, known as a mechanophore, could speed up product testing and potentially reduce the amount of time and materials needed for the development of many kinds of new composites.

The NIST team created their probe from a dye known as rhodamine spirolactam (RS), which changes from a dark state to a light state in reaction to an applied force. In this experiment, the molecule was attached to silk fibers contained inside an epoxy-based composite. As more and more force was applied to the composite, the stress and strain activated the RS, causing it to fluoresce when excited with a laser.

Although the change was not visible to the naked eye, a red laser and a microscope built and designed by NIST were used to take photos inside the composite, showing even the most minute breaks and fissures to its interior, and revealing points where the fiber had fractured. The results were published today in the journal Advanced Materials Interfaces (link is external).

The materials used in the design of composites are diverse. In nature, composites such as crab shell or elephant tusk (bone) are made of proteins and polysaccharides. In this study, epoxy was combined with silk filaments prepared by Professor Fritz Vollrath's group at Oxford University using Bombyx mori silk worms.

Fiber-reinforcedpolymer composites such as the one used in this study combine the most beneficial aspects of the main components--the strength of the fiber and the toughness of the polymer. What all composites have in common, though, is the presence of an interface where the components meet.

The resilience of that interface is critical to a composite's ability to withstand damage. Interfaces that are thin but flexible are often favored by designers and manufacturers, but it is very challenging to measure the interfacial properties in a composite.

"There have long been ways to measure the macroscopic properties of composites," said researcher Jeffrey Gilman, who led the team doing the work at NIST. "But for decades the challenge has been to determine what was happening inside, at the interface."

One option is optical imaging. However, conventional methods for optical imaging are only able to record images at scales as small as 200-400 nanometers. Some interfaces are only 10 to 100 nanometers in thickness, making such techniques somewhat ineffective for imaging the interphase in composites. By installing the RS probe at the interface, the researchers were able to "see" damage exclusively at the interface using optical microscopy.

The NIST research team is planning to expand their research to explore how such probes could be used in other kinds of composites as well. They also would like to use such sensors to enhance the capability of these composites to withstand extreme cold and heat.

There's a tremendous demand for composites that can withstand prolonged exposure to water, too, especially for use in building more resilient infrastructure components such as bridges and giant blades for wind turbines.

The research team plans to continue searching for more ways that damage sensors such as the one in this study could be used to improve standards for existing composites and create new standards for the composites of the future, ensuring that those materials are safe, strong and reliable.

"We now have a damage sensor to help optimize the composite for different applications," Gilman said. "If you attempt a design change, you can figure out if the change you made improved the interface of a composite, or weakened it."

Media Contact

Alison Gillespie
alison.gillespie@nist.gov
301-975-2316

 @usnistgov

http://www.nist.gov 

Alison Gillespie | EurekAlert!

Further reports about: Advanced Materials Bombyx mori NIST fiber nanometers optical microscopy silk wind turbines

More articles from Materials Sciences:

nachricht Researchers invent process to make sustainable rubber, plastics
25.04.2017 | University of Delaware

nachricht Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging
24.04.2017 | Pohang University of Science & Technology (POSTECH)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Link Discovered between Immune System, Brain Structure and Memory

26.04.2017 | Life Sciences

New survey hints at exotic origin for the Cold Spot

26.04.2017 | Physics and Astronomy

NASA examines newly formed Tropical Depression 3W in 3-D

26.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>