Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Silicon Fluorescent Material Developed Enabling Observations under a Bright “Biological Optical Window”

29.09.2016

Toward the Realization of Deep-Level Bioimaging without Using Toxic Elements or UV Light

Researchers in Japan developed a silicon fluorescent material that is very low in toxicity and high in luminescence efficiency, compared to conventional materials. Under near-infrared radiation (NIR) at wavelengths of 650 to 1,000 nm—the range known as the “biological optical window”—that is capable of passing through living systems, the joint group succeeded in bioimaging using this new material.


Figure: Images of NIH3T3 cells observed under a differential interference microscope (left) and a confocal fluorescence microscope (right). A superimposition of the two images is shown in the middle.

Copyright : NIMS

A research group at the National Institute for Materials Science (NIMS) International Center for Materials Nanoarchitectonics (MANA), led by MANA Principal Investigator Françoise Winnik, a MANA postdoc researcher Sourov Chandra, a research group led by MANA Independent Scientist Naoto Shirahata, and a research group consisting of Professor Yoshinobu Baba and Assistant Professor Takao Yasui, Graduate School of Engineering, Nagoya University, jointly developed a silicon fluorescent material that is very low in toxicity and high in luminescence efficiency, compared to conventional materials. Under near-infrared radiation (NIR) at wavelengths of 650 to 1,000 nm—the range known as the “biological optical window”—that is capable of passing through living systems, the joint group succeeded in bioimaging using the new material for the first time in the world.

Fluorescence bioimaging refers to the visualization of cells and other biological tissues that are invisible to the naked eye, by marking them visible with a fluorescent material. The technique enables in vivo observation of the distribution and behavior of living cells in real time. Through application of this technique, it may be feasible to observe the behavior of cells and biomolecules linked to pathogenesis and identify the mechanism of disease development. Many of the conventional fluorescent materials emit light when they react to ultraviolet (UV) light or visible light. However, because biological components such as hemoglobin and body fluids absorb these types of light, they are not applicable for deep-level observation of biological matters. Some fluorescent materials are reactive to light at wavelengths that fall under a “biological optical window,” but most materials have poor luminescent efficiency, and few others with high luminescent efficiency contain toxic elements such as lead and mercury.

Using silicon-based particles, the joint group successfully developed a fluorescent material capable of efficiently producing luminescence by reacting to incoming light at wavelengths comparable to a “biological optical window.” The use of silicon-based fluorescent materials in bioimaging had been previously studied, and some problems were found such as that they need UV light to exert excitation and efficient luminescence, and that they have low light-emitting efficiencies. In view of these issues, the joint research group developed a new core-double shell structure in which crystalline silicon nanoparticles, serving as cores, are coated with hydrocarbon groups and a surfactant. Two‐photon excitation fluorescence imaging demonstrated that crystalline silicon exhibited efficient photoexcitation when absorbing NIR, and that the hydrocarbon groups in the coating increased emission quantum yield. Furthermore, the surfactant coating made the fluorescent material water-soluble. As a result, the new material enabled efficient marking of target biomolecules, and subsequent fluorescent bioimaging of the marked targets using a NIR range of radiation that passes through living systems.

In future studies, we aim to accomplish fluorescent bioimaging at a deep level using the new silicon fluorescent material we developed in this study.

A part of this study was conducted in connection with the “Molecule & Material Synthesis Platform” project at Nagoya University under the “Nanotechnology Platform Japan” program organized by the Ministry of Education, Culture, Sports, Science and Technology.

This study was published in the online version of Nanoscale on April 13, 2016.

Associated links

Journal information

“Functional double-shelled silicon nanocrystals for two-photon fluorescence cell imaging: spectral evolution and tuning”; Sourov Chandra, Batu Ghosh, Grégory Beaune, Usharani Nagarajan, Takao Yasui, Jin Nakamura, Tohru Tsuruoka, Yoshinobu Baba, Naoto Shirahata and Françoise M. Winnik; Nanoscale, 2016,8, 9009-9019, DOI: 10.1039/C6NR01437B

Mikiko Tanifuji | Research SEA
Further information:
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Nagoya University researchers break down plastic waste
29.05.2017 | Nagoya University

nachricht A new tool for discovering nanoporous materials
23.05.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>