Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Silicon Fluorescent Material Developed Enabling Observations under a Bright “Biological Optical Window”

29.09.2016

Toward the Realization of Deep-Level Bioimaging without Using Toxic Elements or UV Light

Researchers in Japan developed a silicon fluorescent material that is very low in toxicity and high in luminescence efficiency, compared to conventional materials. Under near-infrared radiation (NIR) at wavelengths of 650 to 1,000 nm—the range known as the “biological optical window”—that is capable of passing through living systems, the joint group succeeded in bioimaging using this new material.


Figure: Images of NIH3T3 cells observed under a differential interference microscope (left) and a confocal fluorescence microscope (right). A superimposition of the two images is shown in the middle.

Copyright : NIMS

A research group at the National Institute for Materials Science (NIMS) International Center for Materials Nanoarchitectonics (MANA), led by MANA Principal Investigator Françoise Winnik, a MANA postdoc researcher Sourov Chandra, a research group led by MANA Independent Scientist Naoto Shirahata, and a research group consisting of Professor Yoshinobu Baba and Assistant Professor Takao Yasui, Graduate School of Engineering, Nagoya University, jointly developed a silicon fluorescent material that is very low in toxicity and high in luminescence efficiency, compared to conventional materials. Under near-infrared radiation (NIR) at wavelengths of 650 to 1,000 nm—the range known as the “biological optical window”—that is capable of passing through living systems, the joint group succeeded in bioimaging using the new material for the first time in the world.

Fluorescence bioimaging refers to the visualization of cells and other biological tissues that are invisible to the naked eye, by marking them visible with a fluorescent material. The technique enables in vivo observation of the distribution and behavior of living cells in real time. Through application of this technique, it may be feasible to observe the behavior of cells and biomolecules linked to pathogenesis and identify the mechanism of disease development. Many of the conventional fluorescent materials emit light when they react to ultraviolet (UV) light or visible light. However, because biological components such as hemoglobin and body fluids absorb these types of light, they are not applicable for deep-level observation of biological matters. Some fluorescent materials are reactive to light at wavelengths that fall under a “biological optical window,” but most materials have poor luminescent efficiency, and few others with high luminescent efficiency contain toxic elements such as lead and mercury.

Using silicon-based particles, the joint group successfully developed a fluorescent material capable of efficiently producing luminescence by reacting to incoming light at wavelengths comparable to a “biological optical window.” The use of silicon-based fluorescent materials in bioimaging had been previously studied, and some problems were found such as that they need UV light to exert excitation and efficient luminescence, and that they have low light-emitting efficiencies. In view of these issues, the joint research group developed a new core-double shell structure in which crystalline silicon nanoparticles, serving as cores, are coated with hydrocarbon groups and a surfactant. Two‐photon excitation fluorescence imaging demonstrated that crystalline silicon exhibited efficient photoexcitation when absorbing NIR, and that the hydrocarbon groups in the coating increased emission quantum yield. Furthermore, the surfactant coating made the fluorescent material water-soluble. As a result, the new material enabled efficient marking of target biomolecules, and subsequent fluorescent bioimaging of the marked targets using a NIR range of radiation that passes through living systems.

In future studies, we aim to accomplish fluorescent bioimaging at a deep level using the new silicon fluorescent material we developed in this study.

A part of this study was conducted in connection with the “Molecule & Material Synthesis Platform” project at Nagoya University under the “Nanotechnology Platform Japan” program organized by the Ministry of Education, Culture, Sports, Science and Technology.

This study was published in the online version of Nanoscale on April 13, 2016.

Associated links

Journal information

“Functional double-shelled silicon nanocrystals for two-photon fluorescence cell imaging: spectral evolution and tuning”; Sourov Chandra, Batu Ghosh, Grégory Beaune, Usharani Nagarajan, Takao Yasui, Jin Nakamura, Tohru Tsuruoka, Yoshinobu Baba, Naoto Shirahata and Françoise M. Winnik; Nanoscale, 2016,8, 9009-9019, DOI: 10.1039/C6NR01437B

Mikiko Tanifuji | Research SEA
Further information:
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Watching atoms move in hybrid perovskite crystals reveals clues to improving solar cells
22.11.2017 | University of California - San Diego

nachricht Fine felted nanotubes: CAU research team develops new composite material made of carbon nanotubes
22.11.2017 | Christian-Albrechts-Universität zu Kiel

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>