Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Silicon Fluorescent Material Developed Enabling Observations under a Bright “Biological Optical Window”

29.09.2016

Toward the Realization of Deep-Level Bioimaging without Using Toxic Elements or UV Light

Researchers in Japan developed a silicon fluorescent material that is very low in toxicity and high in luminescence efficiency, compared to conventional materials. Under near-infrared radiation (NIR) at wavelengths of 650 to 1,000 nm—the range known as the “biological optical window”—that is capable of passing through living systems, the joint group succeeded in bioimaging using this new material.


Figure: Images of NIH3T3 cells observed under a differential interference microscope (left) and a confocal fluorescence microscope (right). A superimposition of the two images is shown in the middle.

Copyright : NIMS

A research group at the National Institute for Materials Science (NIMS) International Center for Materials Nanoarchitectonics (MANA), led by MANA Principal Investigator Françoise Winnik, a MANA postdoc researcher Sourov Chandra, a research group led by MANA Independent Scientist Naoto Shirahata, and a research group consisting of Professor Yoshinobu Baba and Assistant Professor Takao Yasui, Graduate School of Engineering, Nagoya University, jointly developed a silicon fluorescent material that is very low in toxicity and high in luminescence efficiency, compared to conventional materials. Under near-infrared radiation (NIR) at wavelengths of 650 to 1,000 nm—the range known as the “biological optical window”—that is capable of passing through living systems, the joint group succeeded in bioimaging using the new material for the first time in the world.

Fluorescence bioimaging refers to the visualization of cells and other biological tissues that are invisible to the naked eye, by marking them visible with a fluorescent material. The technique enables in vivo observation of the distribution and behavior of living cells in real time. Through application of this technique, it may be feasible to observe the behavior of cells and biomolecules linked to pathogenesis and identify the mechanism of disease development. Many of the conventional fluorescent materials emit light when they react to ultraviolet (UV) light or visible light. However, because biological components such as hemoglobin and body fluids absorb these types of light, they are not applicable for deep-level observation of biological matters. Some fluorescent materials are reactive to light at wavelengths that fall under a “biological optical window,” but most materials have poor luminescent efficiency, and few others with high luminescent efficiency contain toxic elements such as lead and mercury.

Using silicon-based particles, the joint group successfully developed a fluorescent material capable of efficiently producing luminescence by reacting to incoming light at wavelengths comparable to a “biological optical window.” The use of silicon-based fluorescent materials in bioimaging had been previously studied, and some problems were found such as that they need UV light to exert excitation and efficient luminescence, and that they have low light-emitting efficiencies. In view of these issues, the joint research group developed a new core-double shell structure in which crystalline silicon nanoparticles, serving as cores, are coated with hydrocarbon groups and a surfactant. Two‐photon excitation fluorescence imaging demonstrated that crystalline silicon exhibited efficient photoexcitation when absorbing NIR, and that the hydrocarbon groups in the coating increased emission quantum yield. Furthermore, the surfactant coating made the fluorescent material water-soluble. As a result, the new material enabled efficient marking of target biomolecules, and subsequent fluorescent bioimaging of the marked targets using a NIR range of radiation that passes through living systems.

In future studies, we aim to accomplish fluorescent bioimaging at a deep level using the new silicon fluorescent material we developed in this study.

A part of this study was conducted in connection with the “Molecule & Material Synthesis Platform” project at Nagoya University under the “Nanotechnology Platform Japan” program organized by the Ministry of Education, Culture, Sports, Science and Technology.

This study was published in the online version of Nanoscale on April 13, 2016.

Associated links

Journal information

“Functional double-shelled silicon nanocrystals for two-photon fluorescence cell imaging: spectral evolution and tuning”; Sourov Chandra, Batu Ghosh, Grégory Beaune, Usharani Nagarajan, Takao Yasui, Jin Nakamura, Tohru Tsuruoka, Yoshinobu Baba, Naoto Shirahata and Françoise M. Winnik; Nanoscale, 2016,8, 9009-9019, DOI: 10.1039/C6NR01437B

Mikiko Tanifuji | Research SEA
Further information:
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Simple processing technique could cut cost of organic PV and wearable electronics
06.12.2016 | Georgia Institute of Technology

nachricht InLight study: insights into chemical processes using light
05.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>