Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shape-Shifting Nanorod Ensembles Release Heat Differently

20.02.2015

Researchers at the U.S. Department of Energy’s Argonne National Laboratory have revealed previously unobserved behaviors that show how details of the transfer of heat at the nanoscale causes nanoparticles to change shape in ensembles.

The new findings depict three distinct stages of evolution in groups of gold nanorods from the initial rod-shape to the intermediate-shape to a sphere-shaped nanoparticle. The research suggests new rules for the behavior of nanorod ensembles, providing insights into how to increase heat-transfer efficiency in a nanoscale system.


Subramanian Sankaranarayanan

Using factors such as the shape, temperature and rate of change, Argonne’s Mira supercomputer reconstructs and simulates the movement of nearly 2 million atoms as they vibrate and move during the transition from nanorod to nanosphereoid.

At the nanoscale, individual gold nanorods have unique electronic, thermal and optical properties. Understanding these properties and managing how collections these elongated nanoparticles absorb and release this energy as heat will drive new research in the creation of next-generation technologies such as water purification systems, battery materials and cancer research.

A good deal is known about how single nanorods behave—but little is known about how nanorods behave in ensembles of millions. Understanding how the individual behavior of each nanorod, how it’s orientation and rate of transition differs from those around it, impacts the collective kinetics of the ensemble is critical to using nanorods in future technologies.

“We started with a lot of questions," said Argonne physicist Yuelin Li, "like ‘How much power can the particles sustain before losing functionality? How do individual changes at the nanoscale affect the overall functionality? How much heat is released to the surrounding area?’ Because each nanorod is continuously undergoing a change in shape when heated beyond melting temperature, that means a change in the surface area, and thus a change in its thermal and hydrodynamic properties.”

The researchers used a laser to heat the nanoparticles and X-rays to analyze their changing shapes. Generally, nanorods transition into nanospheres more quickly when supplied with a higher intensity of laser power. In this case, completely different ensemble behaviors were observed when this intensity increased incrementally. The intensity of the heat applied changes not only the nanoparticles’ shape at various rates but also affects their ability to efficiently absorb and release heat.

“For us, the key was to understand just how efficient the nanorods were at transferring light into heat in many different scenarios,” said nanoscientist Subramanian Sankaranarayanan of Argonne’s Center for Nanoscale Materials. “Then we had to determine the physics behind how heat was transferred and all the different ways these nanorods could transition into nanospheres.”

To observe how the rod makes this transition, researchers first shine a laser pulse at the nanorod suspended in a water solution at Argonne’s Advanced Photon Source. The laser lasts for less than a hundred femtoseconds, nearly one trillion times faster than a blink of the eye. What follows is a series of focused and rapid X-ray bursts using a technique called small angle X-ray scattering. The resulting data is used to determine the average shape of the particle as it changes over time.

In this way, scientists can reconstruct the minute changes occurring in the shape of the nanorod. However, to understand the physics underlying this phenomenon, the researchers needed to look deeper at how individual atoms vibrate and move during the transition. For this, they turned to the field of molecular dynamics using the supercomputing power of the 10-petaflop Mira supercomputer at the Argonne Leadership Computing Facility.

Mira used mathematical equations to pinpoint the individual movements of nearly two million of the nanorods' atoms in the water. Using factors such as the shape, temperature and rate of change, the researchers built simulations of the nanorod in many different scenarios to see how the structure changes over time.

“In the end,” said Sankaranarayanan, "we discovered the heat transfer rates for shorter but wider nanospheres are lower than for their rod-shaped predecessors. This decrease in heat transfer efficiency at the nanoscale plays a key role in accelerating the transition from rod to sphere when heated beyond the melting temperature."

The Advanced Photon Source, Center for Nanoscale Materials and Argonne Leadership Computing Facility are all DOE Office of Science User Facilities. Part of the project was conducted using computing time at the ALCF through the DOE Office of Science’s Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program.

The paper, "Femtosecond Laser Pulse Driven Melting in Gold Nanorod Aqueous Colloidal Suspension: Identification of a Transition from Stretched to Exponential Kinetics," was published in the January 2015 issue of Nature.

In addition to Li and Sankaranarayanan, other authors of the paper are Zhang Jiang, Xiao-Min Lin, Haidan Wen, Donald A. Walko, Sanket A. Deshmukh, Ram Subbaraman, Stephen K. Gray and Phay Ho of Argonne.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations. Argonne is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov

Contact Information
Media Contact:
Jared Sagoff
630.252.5549
jsagoff@anl.gov

Writer:
Justin Breaux
630.252.5823
jbreaux@anl.gov

Justin Breaux | newswise

More articles from Materials Sciences:

nachricht Scientists announce the quest for high-index materials
24.07.2017 | Moscow Institute of Physics and Technology

nachricht ADIR Project: Lasers Recover Valuable Materials
24.07.2017 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>