Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shape separates substance

29.12.2017

Japanese researchers show the phase separation of two substances depends on the topology of the pore

Researchers at University of Tokyo Institute of Industrial Science (IIS) report a new physical model that shows how the topology of a porous material influences the phase separation of binary mixtures. The model uses two variables, the density field of a porous structure and the composition field of a binary mixture, to show that topology has very different effects on phase separation depending on the porous structure being random and either 2D or 3D. The study can be read in Science Advances.


Two demixed phases [the green and blue phases] are shown together with the porous structure surface (black).

Credit: Hajime Tanaka and Ryotaro Shimizu, Tanaka Laboratory, Institute of Industrial Science, The University of Tokyo

As IIS Professor Hajime Tanaka, who led the study, explains, the phase separation of binary mixtures, or demixing, in porous materials depends on two factors.

"Phase separation, surface wettability and the geometrical structure of the pore are all interconnected. Structure depends on size and topology. It is very difficult to study topology."

Understanding this influence has applications in widely different fields including battery, medical diagnostics and oil extraction.

Previous studies have generally assumed that pores can be approximated to be an assembly of straight cylinders, but in reality the shapes are random and can take different topologies, complicating the kinetics of the separation. To understand these effects, Tanaka and his collaborator, Dr. Ryotaro Shimizu, developed a novel phase-field model to observe how two mixed substances separate when immersed into a porous material at different levels of surface wettability and two different topologies, 2D or 3D. The model showed a clear relationship between demixing and wetness, but one that was greatly influenced by the topology.

"Only 3D porous structures can be bicontinuous," said Shimizu.

The significance of this distinction leads to unique conformations in 3D structures that Shimizu calls "double-network structures". The result is different kinetics in the phase separation due to different topologies in the pore structure.

"Our study shows that the difference in the pore geometry causes drastic differences in the phase separation," said Tanaka.

###

Research contact:

Professor Hajime Tanaka
Institute of Industrial Science, The University of Tokyo
4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
Tel: +81 3 5452-6125
Fax: +81 3 5452-6126
Email: tanaka@iis.u-tokyo.ac.jp

About Institute of Industrial Science (IIS), the University of Tokyo:

Institute of Industrial Science (IIS), the University of Tokyo is one of the largest university-attached research institutes in Japan. More than 120 research laboratories, each headed by a faculty member, comprise IIS, with more than 1,000 members including approximately 300 staff and 700 students actively engaged in education and research. Our activities cover almost all the areas of engineering disciplines. Since its foundation in 1949, IIS has worked to bridge the huge gaps that exist between academic disciplines and real-world applications.

Media Contact

Hajime Tanaka
tanaka@iis.u-tokyo.ac.jp
81-354-526-125

https://www.iis.u-tokyo.ac.jp/ja/ 

Hajime Tanaka | EurekAlert!

More articles from Materials Sciences:

nachricht Let the good tubes roll
19.01.2018 | DOE/Pacific Northwest National Laboratory

nachricht Method uses DNA, nanoparticles and lithography to make optically active structures
19.01.2018 | Northwestern University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>