Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sequencing the DNA of Things with the Materials Genomics Initiative

30.03.2015

The process of trial and error in scientific research is costly and time-consuming. And while scientific innovation and discovery is necessary to find solutions to some of society’s largest challenges — think clean energy, national security, more accessible technologies —the development of new, more efficient materials typically take decades and millions of dollars.

Since 2011, the Federal government has invested more than $250 million in research and development, and innovation infrastructure to support the use of advanced materials in existing and emerging industrial sectors in the United States. Full bi-partisan support exists for continually increasing the investment yearly.

Four researchers from the Department of Physics and Astronomy at West Virginia University, in conjunction with the federal Materials Genomics Initiative, are finding ways to more quickly design materials that will find their ways to the marketplace. Just as the Human Genome Initiative in the 1990s sequenced human DNA for the subsequent identification and analysis of genes, so too will the Materials Genome Initiative sequence materials for identifying new properties for a variety of applications.

Aldo Romero, Cheng Cen, David Lederman and James P. Lewis have received support for nearly $2 million to rapidly develop new materials under the initiative.

Some of the projects the researchers are pursuing:

• The rapid discovery of fluoride-based multiferroic materials, which could allow for generating electric fields that would support more efficient electronic devices or be electronic responsive under a magnetic field. The research is supported by a $1.2 million National Science Foundation award.

• The computational design of nano-catalysts from gold and silver alloys for use in energy and environmental science applications, such as in automobile exhaust cleanup. This research is supported by a roughly $560,000 National Science Foundation award.

“The Materials Genome Initiative paradigm will revolutionize the way we pursue new technologies with more efficient research teams that focus more on the application-driven properties of materials. But, the problems are extremely complex — in the human genome there are only the four DNA bases; a material’s genomics can consist of anything in the periodic table,” Lewis said.

Ferroelectric power affects a number of technologies, including cloud computing, sensing devices, solar energy systems and nanoelectronics. Conventional ferroelectric materials are complex and costly to produce.

Oxides, a ferroelectric material, develop an internal electric field because their ions move, causing positive/negative charges. If a magnet were to be placed on the material, an electric field would be generated. The problem is that the electricity generated is very small.

“It is very hard to develop a real application using oxides due to the observed small response. Therefore, we have to broaden our set of materials and see if we find some others with a larger response,” Romero said.

“We will focus on creating a material with an interface between an oxide and a fluoride. If we are able to understand the new physics, then we will be able to get new devices,” Romero said.

Lewis is working on the nano-catalyst research with Rongchao Jin, a synthetic chemist at Carnegie Mellon University who received a separate award. Lewis will computationally design the nano-catalysts from gold and silver alloys and Jin will synthesize these nano-catalysts based on Lewis’ discoveries.

Consider the energy and environmental science implications for the auto industry. In the case of auto emissions, instead of current catalysts that are inactive below 200 degrees Celsius, Lewis’ gold and silver nano-catalysts would be able to react at room temperature and help remove harmful emissions including carbon monoxide, nitrogen oxides and hydrocarbons.

Emissions are the measurable release of gases and other particles into the atmosphere from a specified activity and a specified period of time, such as burning fuels. The most common types generally come from automobiles, power plants and industrial companies.

Both Romero and Lewis have also received other awards related to materials genomics. Romero was recently awarded a Petroleum Research Fund grant from the American Chemical Society to design base lithium lightweight materials. And Lewis, was awarded a grant from the Department of Energy to develop new sorbent materials, or “nano-sponges” that utilize light to open and close nano-sized pores.

In 2013, Lewis was awarded a Fulbright that he used to travel to the Czech Republic explore ways to more quickly design materials for solar applications. The process to develop and test these devices can generally take more than 10 years, but Lewis’ aim remains to cut that time in half.

For more information about the WVU Department of Physics and Astronomy’s materials research and involvement in the Materials Genomics Initiative, contact James P. Lewis at james.lewis@mail.wvu.edu or Aldo Romero at Aldo.Romero@mail.wvu.edu.

Contact Information
Devon Copeland
Director of Communications and Marketing
devon.copeland@mail.wvu.edu
Phone: 304-293-6867

Devon Copeland | newswise
Further information:
http://www.wvu.edu

More articles from Materials Sciences:

nachricht New design improves performance of flexible wearable electronics
23.06.2017 | North Carolina State University

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>