Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sequencing the DNA of Things with the Materials Genomics Initiative

30.03.2015

The process of trial and error in scientific research is costly and time-consuming. And while scientific innovation and discovery is necessary to find solutions to some of society’s largest challenges — think clean energy, national security, more accessible technologies —the development of new, more efficient materials typically take decades and millions of dollars.

Since 2011, the Federal government has invested more than $250 million in research and development, and innovation infrastructure to support the use of advanced materials in existing and emerging industrial sectors in the United States. Full bi-partisan support exists for continually increasing the investment yearly.

Four researchers from the Department of Physics and Astronomy at West Virginia University, in conjunction with the federal Materials Genomics Initiative, are finding ways to more quickly design materials that will find their ways to the marketplace. Just as the Human Genome Initiative in the 1990s sequenced human DNA for the subsequent identification and analysis of genes, so too will the Materials Genome Initiative sequence materials for identifying new properties for a variety of applications.

Aldo Romero, Cheng Cen, David Lederman and James P. Lewis have received support for nearly $2 million to rapidly develop new materials under the initiative.

Some of the projects the researchers are pursuing:

• The rapid discovery of fluoride-based multiferroic materials, which could allow for generating electric fields that would support more efficient electronic devices or be electronic responsive under a magnetic field. The research is supported by a $1.2 million National Science Foundation award.

• The computational design of nano-catalysts from gold and silver alloys for use in energy and environmental science applications, such as in automobile exhaust cleanup. This research is supported by a roughly $560,000 National Science Foundation award.

“The Materials Genome Initiative paradigm will revolutionize the way we pursue new technologies with more efficient research teams that focus more on the application-driven properties of materials. But, the problems are extremely complex — in the human genome there are only the four DNA bases; a material’s genomics can consist of anything in the periodic table,” Lewis said.

Ferroelectric power affects a number of technologies, including cloud computing, sensing devices, solar energy systems and nanoelectronics. Conventional ferroelectric materials are complex and costly to produce.

Oxides, a ferroelectric material, develop an internal electric field because their ions move, causing positive/negative charges. If a magnet were to be placed on the material, an electric field would be generated. The problem is that the electricity generated is very small.

“It is very hard to develop a real application using oxides due to the observed small response. Therefore, we have to broaden our set of materials and see if we find some others with a larger response,” Romero said.

“We will focus on creating a material with an interface between an oxide and a fluoride. If we are able to understand the new physics, then we will be able to get new devices,” Romero said.

Lewis is working on the nano-catalyst research with Rongchao Jin, a synthetic chemist at Carnegie Mellon University who received a separate award. Lewis will computationally design the nano-catalysts from gold and silver alloys and Jin will synthesize these nano-catalysts based on Lewis’ discoveries.

Consider the energy and environmental science implications for the auto industry. In the case of auto emissions, instead of current catalysts that are inactive below 200 degrees Celsius, Lewis’ gold and silver nano-catalysts would be able to react at room temperature and help remove harmful emissions including carbon monoxide, nitrogen oxides and hydrocarbons.

Emissions are the measurable release of gases and other particles into the atmosphere from a specified activity and a specified period of time, such as burning fuels. The most common types generally come from automobiles, power plants and industrial companies.

Both Romero and Lewis have also received other awards related to materials genomics. Romero was recently awarded a Petroleum Research Fund grant from the American Chemical Society to design base lithium lightweight materials. And Lewis, was awarded a grant from the Department of Energy to develop new sorbent materials, or “nano-sponges” that utilize light to open and close nano-sized pores.

In 2013, Lewis was awarded a Fulbright that he used to travel to the Czech Republic explore ways to more quickly design materials for solar applications. The process to develop and test these devices can generally take more than 10 years, but Lewis’ aim remains to cut that time in half.

For more information about the WVU Department of Physics and Astronomy’s materials research and involvement in the Materials Genomics Initiative, contact James P. Lewis at james.lewis@mail.wvu.edu or Aldo Romero at Aldo.Romero@mail.wvu.edu.

Contact Information
Devon Copeland
Director of Communications and Marketing
devon.copeland@mail.wvu.edu
Phone: 304-293-6867

Devon Copeland | newswise
Further information:
http://www.wvu.edu

More articles from Materials Sciences:

nachricht Switched-on DNA
20.02.2017 | Arizona State University

nachricht Using a simple, scalable method, a material that can be used as a sensor is developed
15.02.2017 | University of the Basque Country

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>