Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seeing the big picture in photosynthetic light harvesting

22.01.2016

Berkeley Lab researchers create first multiple antennae model of photosystem II

To understand what goes on inside a beehive you can't just study the activity of a single bee. Likewise, to understand the photosynthetic light-harvesting that takes place inside the chloroplast of a leaf, you can't just study the activity of a single antenna protein. Researchers with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory and the University of California (UC) Berkeley have created the first computational model that simulates the light-harvesting activity of the thousands of antenna proteins that would be interacting in the chloroplast of an actual leaf. The results from this model point the way to improving the yields of food and fuel crops, and developing artificial photosynthesis technologies for next generation solar energy systems.


This first computational model to simulate multiple antenna proteins, photosystem II (PSII) complexes are shown as teal pills, and light harvesting complexes (LHC II) are shown as green circles.

(Courtesy of Berkeley Lab)

The new model simulates light-harvesting across several hundred nanometers of a thylakoid membrane, which is the membrane within a chloroplast that harbors photosystem II (PSII), a complex of antennae made up of mostly of chlorophyll-containing proteins. The antennae in PSII gain "excitation" energy when they absorb sunlight and, through quantum mechanical effects, almost instantaneously transport this extra energy to reaction centers for conversion into chemical energy. Previous models of PSII simulated energy transport within a single antenna protein.

"Our model, which looked at some 10,000 proteins containing about 100,000 chlorophyll molecules, is the first to simulate a region of the PSII membrane large enough to represent behavior in a chloroplast while respecting and using both the quantum dynamics and the spatial structure of the membrane's components," says chemist Graham Fleming, who oversaw the development of this model. Fleming is a world authority on the quantum dynamics of photosynthesis. He holds appointments with Berkeley Lab, the University of California (UC) Berkeley, and the Kavli Energy NanoScience Institute at Berkeley.

"We use insights from structural biology, advanced spectroscopy and theory to reproduce observed phenomena spanning from one nanometer to hundreds of nanometers, and from ten femtoseconds to one nanosecond," Fleming says. "This enables us to explain the mechanisms underlying the high quantum efficiency of PSII light harvesting in ideal conditions for the first time."

Fleming is the corresponding author of a paper describing this research in the Proceedings of the National Academy of Sciences. The paper is titled "Multiscale model of photosystem II light harvesting in the thylakoid membrane of plants." Co-authors are Kapil Amarnath, Doran Bennett and Anna Schneider.

The ability of green plants to thrive in sunlight stems in part from the flexibility that PSII displays in harvesting solar energy. At low levels of light, through quantum processes that have been modeled by Fleming and coworkers, a photon of sunlight can be utilized for creation of chemical energy with more than 90-percent probability. Thanks to a protective mechanism known as "energy-dependent quenching," PSII is able to ensure that a plant absorbs only the amount of solar energy it needs while excess energy that might damage the plant is safely dissipated.

Earlier work by Fleming and his research group revealed a molecular mechanism by which PSII is able to act as a sort of photosynthetic "dimmer switch" to regulate the amount of solar energy transported to the reaction center. However, this work was done for a single PSII antenna and did not reflect how these mechanisms might affect the transport of energy across assemblies of antennae, which in turn would affect the photochemical yield in the reaction centers of a functional thylakoid membrane.

"Our new model shows that excitation energy moves diffusively through the antennae with a diffusion length of 50 nanometers until it reaches a reaction center," Fleming says. "The diffusion length of this excitation energy determines PSII's high quantum efficiency in ideal conditions, and how that efficiency is altered by the membrane morphology and the closure of reaction centers. Ultimately, this means that the diffusion length of this excitation energy determines the photosynthetic efficiency of the host plant."

Given that the ability of PSII to regulate the amount of solar energy being converted to chemical energy is essential for optimal plant fitness in natural sunlight, understanding this ability and learning to manipulate it is a prerequisite for systematically engineering the light-harvesting apparatus in crops. It should also be highly useful for designing artificial materials with the same flexible properties.

"Our next step is to learn now to model a system of PSII's complexity over timescales ranging from femtoseconds to minutes, and lengthscales ranging from nanometers to micrometers," Fleming says.

###

This research was supported by the DOE Office of Science. Computational work was carried out at the National Energy Research Scientific Computing Center (NERSC), a DOE Office of Science User Facility hosted at Berkeley Lab.

Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit http://www.lbl.gov.

The DOE Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Lynn Yarris | EurekAlert!

More articles from Materials Sciences:

nachricht A new tool for discovering nanoporous materials
23.05.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Did you know that packaging is becoming intelligent through flash systems?
23.05.2017 | Heraeus Noblelight GmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>