Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017

Members of the Faculties of Chemistry and Fundamental Physical and Chemical Engineering at the Lomonosov Moscow State University in collaboration with foreign partners have synthesized and studied new liquid-crystal photochromic polymers.

Members of the Faculties of Chemistry and Fundamental Physical and Chemical Engineering at the Lomonosov Moscow State University in collaboration with foreign partners have synthesized and studied new liquid-crystal photochromic polymers.


This is an LCD texture observed in a polarization-optical microscope.

Credit: Alexey Bobrovsky

The Lomonosov Moscow State University scientists, cooperating with Czech colleagues from the Institute of Physics (Prague), have synthesized and studied new liquid-crystal polymers, combing optical properties of liquid crystals with mechanical properties of polymers.

Such polymers could quickly change molecular orientation under the influence of external fields and form coatings, films and details of complex shape. An important advantage of such systems in comparison with low-molecular-mass liquid crystals lies in the fact that at room temperature liquid-crystal polymers exist in the glass-like state, fixing molecular orientation.

Liquid-crystal polymers comprised of molecules with high molecular mass, called macromolecules. They are comb-shaped what implies that photosensitive rigid azobenzene fragments (C6H5N=NC6H5) are attached to the main flexible polymer chain with the help of spacers, consisting of CH2 moieties. These fragments are striving for sequencing and could form a wide variety of "packings" - namely, liquid-crystal phases. When light strikes such polymers, azobenzene groups isomerize, what results in alteration of polymers' optical properties. Such polymers are called photochromic.

The scientists have paid special attention to the processes of photoisomerization and photo-orientation. Photoisomerization is rearrangement of bonds inside a polymer molecule under the influence of light. Photo-orientation stands for alteration of rod-like azobenzene (in our case) fragments' orientation under the effect of plane polarized light, in whose direction of electric field is strictly determined. Being exposed to polarized light, azobenzene fragments change their angle in the course of photoisomerization cycles.

This occurs until their orientation becomes perpendicular to the polarization plane of the incident light and the fragments are no more capable of absorbing light. The photo-orientation process not only allows to change the orientation of azobenzene fragments of macromolecules but also causes emergence of dichroism and birefringence. Dichroism is difference of intensity of polarized light absorption in orthogonal directions. Birefringence refers to light beam splitting into two components with orthogonal (perpendicular) polarization; the direction of one of these components doesn't change, while the second beam is refracted.

Alexey Bobrovsky, RAS Professor, Doctor of Chemistry, Chief Research Fellow at the Department of High Molecular Compounds of the Faculty of Chemistry, Lomonosov Moscow State University, and one of the article authors says: "The key idea of our project is to study how the chemical structure of new comb-shaped liquid-crystal photochromic polymers influences their phase behavior and photooptical properties. Photoisomerization and photo-orientation processes allow exactly control phase behavior and optical properties of the elaborated systems."

At first, scientists from the Lomonosov Moscow State University in cooperation with their Czech colleagues from Institute of Physics, the Czech Academy of Sciences synthesized monomers, out of which the Lomonosov Moscow State University scientists obtained liquid-crystal polymers. The authors have studied phase behavior and temperatures of phase transitions of polymers, applying methods of polarizing optical microscopy and differential scanning calorimetry. X-ray structural analysis was used for studying detailed structure of phases at the Faculty of Fundamental Physical and Chemical Engineering of the Lomonosov Moscow State University.

According to the authors' words, the most significant project part was to study photooptical properties and photochromism of the obtained polymers. This stage was divided into two parts: irradiation of the polymer films by unpolarized UV light, during which photoisomerization (namely, rearrangement of intermolecular communications) took place. And the second part implied irradiation by polarized light resulted in photo-orientation.

Alexey Bobrovsky notices that the article relates to a major cycle of projects, devoted to photoinduced processes in photochromic liquid-crystal polymers. This article is research work only: the authors have studied interconnections between the chemical structure and the compound properties.

The scientist concludes: "Photoisomerization and photo-orientation open large perspectives for creation of so called "smart materials". They react to any external stimuli and could be used for information recording, storage and transfer, as well as in optical devices of diverse complexity. These precise polymers will be hardy used in a real-case scenario as they are too expensive and their synthesis is quite complicated. On the other hand, you can predict not in every instance, what systems will find application at what period of time and in what conditions."

Media Contact

Yana Khlyustova
science-release@rector.msu.ru

http://www.msu.ru 

Yana Khlyustova | EurekAlert!

More articles from Materials Sciences:

nachricht Robust and functional – surface finishing by suspension spraying
19.09.2017 | Fraunhofer-Institut für Keramische Technologien und Systeme IKTS

nachricht Graphene and other carbon nanomaterials can replace scarce metals
19.09.2017 | Chalmers University of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Foster tadpoles trigger parental instinct in poison frogs

20.09.2017 | Life Sciences

Drones can almost see in the dark

20.09.2017 | Information Technology

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>