Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists film shock waves in diamond

18.06.2015

X-ray laser opens up new avenues of research in material science

Researchers have used ultra-short pulses of X-rays to film shock waves in diamonds. The study headed by DESY scientists opens up new possibilities for studying the properties of materials. Thanks to the extremely bright and short X-ray flashes, the researchers were able to follow the rapid, dynamic changes taking place in the shock wave with a high spatial as well as a high temporal resolution.


The shock wave races through the diamond. The ripples on the left are caused by the sample mounting.

Credit: Andreas Schropp/DESY

The team around DESY physicist Prof. Christian Schroer is presenting its results in the journal Scientific Reports. "With our experiment we are venturing into new scientific terrain," says the first author of the scientific paper, Dr. Andreas Schropp of DESY. "We have managed for the first time to use X-ray imaging to quantitatively determine the local properties and the dynamic changes of matter under extreme conditions."

For their pilot study, the scientists analysed diamond samples with the world's most powerful X-ray laser, the Linac Coherent Light Source LCLS at the SLAC National Accelerator Laboratory in the U.S. The researchers fixed a three centimetre long diamond strip, just 0.3 millimetre thick, in a specimen holder and triggered a shock wave with a brief flash from a powerful infrared laser that hit the narrow edge of the diamond; this pulse lasted 0.15 billionths of a second (150 picoseconds) and reached a power level of up to 12 trillion watts (12 terawatts) per square centimetre. The resulting shock wave shot through the diamond at about 72,000 kilometres per hour.

"In order to take snapshots of such rapid processes, you need to use extremely short exposure times," explains Schropp. The X-ray pulses produced by the LCLS last just 50 millionths of a billionth of a second (50 femtoseconds), allowing them to capture even the fastest movements. However, as the diamond sample was destroyed with every shot, the scientists had to repeat the experiment with identical specimens for each image, whereby each picture was taken a little later to show the shock wave at a slightly later time. Finally, they assembled these still images to create a film, as in a "flip book".

Using this film, the scientists were able to determine quantitatively the change in density due to the shock wave. The X-ray microscope specifically developed for this purpose, permits details of the sample down to 500 millionths of a millimetre (500 nanometres) to be resolved.

Together with the speed of sound measured, this allows the state of the diamond to be determined under conditions of extreme pressure. The analysis shows that the intense shock wave compresses the diamond - one of the hardest materials in the world - locally by almost ten percent.

This pilot study offers new insights into the structure of diamonds. "In view of the remarkable physical properties of diamond it continues to be important both scientifically and technologically," says Prof. Jerome Hastings of SLAC.

"We have for the first time directly imaged shock waves in diamond using X-rays, and this opens up new perspectives on the dynamic behaviour of diamond under high pressure." Material scientists are particularly interested in the complex behaviour behind the initial shock front, which can already be seen in these first images.

The scientists hope that by refining X-ray lasers and optimising the detector, the spatial resolution can be further improved to less than 100 nanometres, for instance also at the superconducting X-ray laser European XFEL that is currently being built from the DESY campus in Hamburg to the neighbouring town of Schenefeld.

Thanks to the penetrating properties of X-rays, this technique can be applied to virtually any solid material, such as iron or aluminium. "The method is important for a series of applications in material science and for describing the physical processes occurring inside planets," summarises Schroer.

Apart from DESY and SLAC, the Technical University of Dresden, the University of Oxford in the UK, and the Lawrence Livermore National Laboratory (LLNL) in the U.S. were also involved in the research.

###

Deutsches Elektronen-Synchrotron DESY is the leading German accelerator centre and one of the leading in the world. DESY is a member of the Helmholtz Association and receives its funding from the German Federal Ministry of Education and Research (BMBF) (90 per cent) and the German federal states of Hamburg and Brandenburg (10 per cent). At its locations in Hamburg and Zeuthen near Berlin, DESY develops, builds and operates large particle accelerators, and uses them to investigate the structure of matter. DESY's combination of photon science and particle physics is unique in Europe.

Reference

Imaging Shock Waves in Diamond with Both High Temporal and Spatial Resolution at an XFEL; Andreas Schropp, Robert Hoppe, Vivienne Meier, Jens Patommel, Frank Seiboth, Yuan Ping, Damien G. Hicks, Martha A. Beckwith, Gilbert W. Collins, Andrew Higginbotham, Justin S. Wark, Hae Ja Lee, Bob Nagler, Eric C. Galtier, Brice Arnold, Ulf Zastrau, Jerome B. Hastings & Christian G. Schroer; Scientific Reports, 2015; DOI: 10.1038/srep11089

Media Contact

Thomas Zoufal
presse@desy.de
49-408-998-1666

 @desynews

http://www.desy.de 

Thomas Zoufal | EurekAlert!

More articles from Materials Sciences:

nachricht Move over, Superman! NIST method sees through concrete to detect early-stage corrosion
27.04.2017 | National Institute of Standards and Technology (NIST)

nachricht Control of molecular motion by metal-plated 3-D printed plastic pieces
27.04.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>