Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists blueprint tiny cellular 'nanomachine'

18.12.2015

Scientists have drawn up molecular blueprints of a tiny cellular 'nanomachine', whose evolution is an extraordinary feat of nature, by using one of the brightest X-ray sources on Earth.

The scientists produced the structural map of this nanomachine - diacylglycerol kinase - by using a "hit and run" crystallography technique. In doing so, they have been able to understand how the tiny enzyme performs critical cellular duties - answering questions that have been on the table for over 50 years about this 'paradigmatic protein'.


Graphic shows the structure of diacylglycerol kinase (DgkA) determined with the Free Electron Laser (FEL) in Stanford, Ca. This new structure has been deposited in the protein data bank under the code 4UYO.

Credit: The Biodesign Institute at Arizona State University

Kinases are key players in metabolism, cell signalling, protein regulation, cellular transport, secretory processes, and many other cellular pathways that allow us to function healthily. They coordinate the transfer of energy from certain molecules to specific substrates, affecting their activity, reactivity, and ability to bind other molecules.

Diacylglycerol kinase, the focus of this study, plays a role in bacterial cell wall synthesis. It is a small, integral membrane enzyme that coordinates a particularly complex reaction: its lipid substrate is hydrophobic (repelled by water) and resides in cell membranes, while its co-substrate, ATP, is entirely water soluble.

How it does this had remained a mystery for decades, but the newly produced blueprints have answered these questions.

"How this diminutive nanomachine, less than 10 nm tall, brings these two disparate substrates together at the membrane interface for reaction is revealed in a molecularly detailed crystal structure. It is the smallest known kinase, and seeing its form with crystal clarity is now helping us to answer questions that formed from over 50 years of work on this paradigmatic protein," said Professor of Membrane Structural and Functional Biology at Trinity College Dublin, Martin Caffrey.

Figuring out how this tiny machine works at the molecular level was enormously facilitated by our use of one of the brightest X-ray sources on Earth, the X-ray free-electron laser at the Stanford Linear Accelerator Center.

Professor Caffrey added: "This instrument produces bursts of X-rays just femtoseconds (a quad-trillionth of a second) long. With these short bursts we were able to obtain structural information about the enzyme before it vaporized through radiation damage in what I tritely refer to as 'Hit and Run' serial crystallography."

According to Petra Fromme, the director of the Center for Applied Structural Discovery at Arizona State University's Biodesign Institute and a co-author of the current study, "this is the first structure of a protein that is a membrane-integral enzyme and important biocatalyst in the cell." (Biocatalysts speed up the rate of critical biological reactions.)

The tiny kinase is one of the research targets for the NIH funded Center for Membrane Proteins in Infectious Diseases at ASU, which is devoted to unraveling the molecular basis of viral and bacterial proteins involved in diseases as well as the human proteins defending the body from pathogen attack.

The ASU team contributed to the work with expertise in crystal growth and sample injection, as well as data collection and evaluation.

In the future, the scientists hope to extend their free-electron laser work to make 'X-ray movies' of this remarkable nanomachine, so as to watch how it 'does chemistry' in atomic detail in real time.

The article describing the work has just been published in the leading journal Nature Communications.

###

The team of researchers at ASU includes the faculty Wei Liu, Petra Fromme and Raimund Fromme from the School of Molecular Sciences, and John Spence, Uwe Weierstall and Nadia Zatsepin from the Department of Physics, the researcher Ingo Grotjohann as well as the graduate students Shibom Basu, Christopher Kupitz and Kimberley Rendek.

Media Contact

Petra Fromme, Professor and Director, Center for Applied Structural Discovery, Biodesign Institute at Arizona State University. Petra Fromme Petra.Fromme@asu.edu or tel: 480)965-9028 Lab Phone: (480)965-8040

Richard Harth, Science Writer, Biodesign Institute at Arizona State University. Richard.harth@asu.edu

Martin Caffrey, Professor of Membrane Structural and Functional Biology, School of Biochemistry and Immunology, Trinity College Dublin, at martin.caffrey@tcd.ie or Tel: +353-1-896-4253 / +353-86-818-7704

Thomas Deane, Press Officer for the Faculty of Engineering, Mathematics and Science, Trinity College Dublin, at deaneth@tcd.ie or Tel: +353-1-896-4685

Media Contact

RICHARD HARTH
RICHARD.HARTH@ASU.EDU
504-427-2666

 @ASU

http://asunews.asu.edu/ 

Richard Harth | EurekAlert!

Further reports about: Biodesign Biology X-ray blueprint enzyme nanomachine proteins tiny

More articles from Materials Sciences:

nachricht Thanks for the memory: NIST takes a deep look at memristors
22.01.2018 | National Institute of Standards and Technology (NIST)

nachricht Let the good tubes roll
19.01.2018 | DOE/Pacific Northwest National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>