Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists blueprint tiny cellular 'nanomachine'

18.12.2015

Scientists have drawn up molecular blueprints of a tiny cellular 'nanomachine', whose evolution is an extraordinary feat of nature, by using one of the brightest X-ray sources on Earth.

The scientists produced the structural map of this nanomachine - diacylglycerol kinase - by using a "hit and run" crystallography technique. In doing so, they have been able to understand how the tiny enzyme performs critical cellular duties - answering questions that have been on the table for over 50 years about this 'paradigmatic protein'.


Graphic shows the structure of diacylglycerol kinase (DgkA) determined with the Free Electron Laser (FEL) in Stanford, Ca. This new structure has been deposited in the protein data bank under the code 4UYO.

Credit: The Biodesign Institute at Arizona State University

Kinases are key players in metabolism, cell signalling, protein regulation, cellular transport, secretory processes, and many other cellular pathways that allow us to function healthily. They coordinate the transfer of energy from certain molecules to specific substrates, affecting their activity, reactivity, and ability to bind other molecules.

Diacylglycerol kinase, the focus of this study, plays a role in bacterial cell wall synthesis. It is a small, integral membrane enzyme that coordinates a particularly complex reaction: its lipid substrate is hydrophobic (repelled by water) and resides in cell membranes, while its co-substrate, ATP, is entirely water soluble.

How it does this had remained a mystery for decades, but the newly produced blueprints have answered these questions.

"How this diminutive nanomachine, less than 10 nm tall, brings these two disparate substrates together at the membrane interface for reaction is revealed in a molecularly detailed crystal structure. It is the smallest known kinase, and seeing its form with crystal clarity is now helping us to answer questions that formed from over 50 years of work on this paradigmatic protein," said Professor of Membrane Structural and Functional Biology at Trinity College Dublin, Martin Caffrey.

Figuring out how this tiny machine works at the molecular level was enormously facilitated by our use of one of the brightest X-ray sources on Earth, the X-ray free-electron laser at the Stanford Linear Accelerator Center.

Professor Caffrey added: "This instrument produces bursts of X-rays just femtoseconds (a quad-trillionth of a second) long. With these short bursts we were able to obtain structural information about the enzyme before it vaporized through radiation damage in what I tritely refer to as 'Hit and Run' serial crystallography."

According to Petra Fromme, the director of the Center for Applied Structural Discovery at Arizona State University's Biodesign Institute and a co-author of the current study, "this is the first structure of a protein that is a membrane-integral enzyme and important biocatalyst in the cell." (Biocatalysts speed up the rate of critical biological reactions.)

The tiny kinase is one of the research targets for the NIH funded Center for Membrane Proteins in Infectious Diseases at ASU, which is devoted to unraveling the molecular basis of viral and bacterial proteins involved in diseases as well as the human proteins defending the body from pathogen attack.

The ASU team contributed to the work with expertise in crystal growth and sample injection, as well as data collection and evaluation.

In the future, the scientists hope to extend their free-electron laser work to make 'X-ray movies' of this remarkable nanomachine, so as to watch how it 'does chemistry' in atomic detail in real time.

The article describing the work has just been published in the leading journal Nature Communications.

###

The team of researchers at ASU includes the faculty Wei Liu, Petra Fromme and Raimund Fromme from the School of Molecular Sciences, and John Spence, Uwe Weierstall and Nadia Zatsepin from the Department of Physics, the researcher Ingo Grotjohann as well as the graduate students Shibom Basu, Christopher Kupitz and Kimberley Rendek.

Media Contact

Petra Fromme, Professor and Director, Center for Applied Structural Discovery, Biodesign Institute at Arizona State University. Petra Fromme Petra.Fromme@asu.edu or tel: 480)965-9028 Lab Phone: (480)965-8040

Richard Harth, Science Writer, Biodesign Institute at Arizona State University. Richard.harth@asu.edu

Martin Caffrey, Professor of Membrane Structural and Functional Biology, School of Biochemistry and Immunology, Trinity College Dublin, at martin.caffrey@tcd.ie or Tel: +353-1-896-4253 / +353-86-818-7704

Thomas Deane, Press Officer for the Faculty of Engineering, Mathematics and Science, Trinity College Dublin, at deaneth@tcd.ie or Tel: +353-1-896-4685

Media Contact

RICHARD HARTH
RICHARD.HARTH@ASU.EDU
504-427-2666

 @ASU

http://asunews.asu.edu/ 

Richard Harth | EurekAlert!

Further reports about: Biodesign Biology X-ray blueprint enzyme nanomachine proteins tiny

More articles from Materials Sciences:

nachricht Move over, Superman! NIST method sees through concrete to detect early-stage corrosion
27.04.2017 | National Institute of Standards and Technology (NIST)

nachricht Control of molecular motion by metal-plated 3-D printed plastic pieces
27.04.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>