Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rice researchers demo solar water-splitting technology

07.09.2015

Process uses light-harvesting nanoparticles, captures energy from 'hot electrons'

Rice University researchers have demonstrated an efficient new way to capture the energy from sunlight and convert it into clean, renewable energy by splitting water molecules.


Rice University researchers have demonstrated an efficient new way to capture the energy from sunlight and convert it into clean, renewable energy by splitting water molecules.

Credit: I. Thomann/Rice University

The technology, which is described online in the American Chemical Society journal Nano Letters, relies on a configuration of light-activated gold nanoparticles that harvest sunlight and transfer solar energy to highly excited electrons, which scientists sometimes refer to as "hot electrons."

"Hot electrons have the potential to drive very useful chemical reactions, but they decay very rapidly, and people have struggled to harness their energy," said lead researcher Isabell Thomann, assistant professor of electrical and computer engineering and of chemistry and materials science and nanoengineering at Rice. "For example, most of the energy losses in today's best photovoltaic solar panels are the result of hot electrons that cool within a few trillionths of a second and release their energy as wasted heat."

Capturing these high-energy electrons before they cool could allow solar-energy providers to significantly increase their solar-to-electric power-conversion efficiencies and meet a national goal of reducing the cost of solar electricity.

In the light-activated nanoparticles studied by Thomann and colleagues at Rice's Laboratory for Nanophotonics (LANP), light is captured and converted into plasmons, waves of electrons that flow like a fluid across the metal surface of the nanoparticles.

Plasmons are high-energy states that are short-lived, but researchers at Rice and elsewhere have found ways to capture plasmonic energy and convert it into useful heat or light. Plasmonic nanoparticles also offer one of the most promising means of harnessing the power of hot electrons, and LANP researchers have made progress toward that goal in several recent studies.

Thomann and her team, graduate students Hossein Robatjazi, Shah Mohammad Bahauddin and Chloe Doiron, created a system that uses the energy from hot electrons to split molecules of water into oxygen and hydrogen. That's important because oxygen and hydrogen are the feedstocks for fuel cells, electrochemical devices that produce electricity cleanly and efficiently.

To use the hot electrons, Thomann's team first had to find a way to separate them from their corresponding "electron holes," the low-energy states that the hot electrons vacated when they received their plasmonic jolt of energy. One reason hot electrons are so short-lived is that they have a strong tendency to release their newfound energy and revert to their low-energy state.

The only way to avoid this is to engineer a system where the hot electrons and electron holes are rapidly separated from one another. The standard way for electrical engineers to do this is to drive the hot electrons over an energy barrier that acts like a one-way valve. Thomann said this approach has inherent inefficiencies, but it is attractive to engineers because it uses well-understood technology called Schottky barriers, a tried-and-true component of electrical engineering.

"Because of the inherent inefficiencies, we wanted to find a new approach to the problem," Thomann said. "We took an unconventional approach: Rather than driving off the hot electrons, we designed a system to carry away the electron holes. In effect, our setup acts like a sieve or a membrane. The holes can pass through, but the hot electrons cannot, so they are left available on the surface of the plasmonic nanoparticles."

The setup features three layers of materials. The bottom layer is a thin sheet of shiny aluminum. This layer is covered with a thin coating of transparent nickel-oxide, and scattered atop this is a collection of plasmonic gold nanoparticles -- puck-shaped disks about 10 to 30 nanometers in diameter.

When sunlight hits the discs, either directly or as a reflection from the aluminum, the discs convert the light energy into hot electrons. The aluminum attracts the resulting electron holes and the nickel oxide allows these to pass while also acting as an impervious barrier to the hot electrons, which stay on gold. By laying the sheet of material flat and covering it with water, the researchers allowed the gold nanoparticles to act as catalysts for water splitting. In the current round of experiments, the researchers measured the photocurrent available for water splitting rather than directly measuring the evolved hydrogen and oxygen gases produced by splitting, but Thomann said the results warrant further study.

"Utilizing hot electron solar water-splitting technologies we measured photocurrent efficiencies that were on par with considerably more complicated structures that also use more expensive components," Thomann said. "We are confident that we can optimize our system to significantly improve upon the results we have already seen."

###

Robatjazi is a graduate student in electrical and computer engineering, Bahauddin is a graduate student in physics and astronomy and Doiron is a graduate student in applied physics. The research was supported by the Welch Foundation and a National Science Foundation CAREER Award.

High-resolution IMAGES are available for download at:

http://news.rice.edu/wp-content/uploads/2015/08/0901-ELECTRO-team-lg.jpg
CAPTION: Rice University researchers (clockwise from left) Chloe Doiron, Hossein Robatjazi, Shah Mohammad Bahauddin and Isabell Thomann.
CREDIT: Jeff Fitlow/Rice University

http://news.rice.edu/wp-content/uploads/2015/08/0901-ELECTRO-color-lg.jpg
CAPTION: Rice University researchers have demonstrated an efficient new way to capture the energy from sunlight and convert it into clean, renewable energy by splitting water molecules.
CREDIT: I. Thomann/Rice University

http://news.rice.edu/wp-content/uploads/2014/06/0616_THOMANN-Isabell3-lg.jpg
CAPTION: Isabell Thomann
CREDIT: Jeff Fitlow/Rice University

A copy of the Nano Letters paper, "Direct Plasmon-Driven Photoelectrocatalysis," is available at: http://pubs.acs.org/doi/abs/10.1021/acs.nanolett.5b02453

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,888 undergraduates and 2,610 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for best quality of life and for lots of race/class interaction by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go here.

Media Contact

Jade Boyd
jadeboyd@rice.edu
713-348-6778

 @RiceUNews

http://news.rice.edu 

Jade Boyd | EurekAlert!

More articles from Materials Sciences:

nachricht Researchers devise microreactor to study formation of methane hydrate
23.08.2017 | NYU Tandon School of Engineering

nachricht Meter-sized single-crystal graphene growth becomes possible
22.08.2017 | Science China Press

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>