Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017

University of Virginia-based team uses Titan to understand material design at the nanoscale

With the advent of laser technology in the 1960s, materials scientists gained a new tool to both study and modify materials. Today, lasers allow researchers to manipulate materials on atomic and subatomic levels, leading to new materials and a host of other applications.


Homogenous boiling (a phase explosion): Liquid superheated to ~90 percent of the spinodal temperature rapidly decomposes into vapor and liquid droplets.

Credit: ORNL

For instance, by controlling laser wavelength, intensity, and pulse duration, researchers can modify metals to exhibit useful new properties for a broad range of applications. Until recent years, researchers relied on experimental trial and error to achieve the desired properties, but in the era of supercomputing, experiments can be done in a virtual laboratory.

University of Virginia professor Leonid Zhigilei led a team that made such a virtual laboratory by using computing resources at the Oak Ridge Leadership Computing Facility (OLCF), a US Department of Energy (DOE) Office of Science User Facility located at DOE's Oak Ridge National Laboratory. The team used the OLCF's Titan supercomputer to gain deeper insights into laser interactions with metal surfaces.

"Rapid expansion of practical applications of ultrashort pulse laser processing, including engineering of new materials, requires understanding of fundamental mechanisms of laser induced structural and phase transformations," Zhigilei said. "Experimental probing of these transformations, which take place on the picosecond time scale (one-trillionth of a second), is difficult, expensive, and often not even feasible. Performing 'virtual experiments' on a supercomputer provides an attractive alternative.

"Moreover, computational results may guide focused experimental exploration of the most promising irradiation regimes or interesting phenomena predicted in the simulations," he said.

By using a combination of virtual and real-world experiments, the team is gaining a fundamental understanding of the mechanisms for material interactions induced by lasers.

Short pulses, large simulations

The term laser is actually an acronym for light amplification by stimulated emission of radiation. The visible light that we see in our daily lives is electromagnetic radiation--energy--that falls within a wavelength our eyes can perceive. Atoms must be excited to release their light-emitting energy, though, and lasers harness these atoms' energy into beams.

These beams are a collection of coherent light waves. The amount of energy they carry, however, can vary widely, and both low-energy and high-energy lasers have made huge impacts on modern life. Low-energy lasers helped usher in the era of CDs and DVDs, whereas high-energy lasers have simplified countless medical procedures and enabled a wide range of material design applications. The latter of these requires precision and a detailed understanding of how lasers interact with a material on the nanoscale.

Zhigilei noted that his team has focused on understanding the ultrafast phase transitions triggered by laser irradiation, or the pathways the material takes to go from one state of matter to another, such as ice melting and becoming water.

If a heat source hits an ice cube, for instance, it begins melting at the heating point. Heat then transfers to the colder regions behind, melting the whole cube essentially from front to back. The intense energy of lasers, though, makes it possible for that same ice cube to melt from the inside or melt in various regions simultaneously. In the case of an ice cube, the entire solid ultimately turns to water, but when researchers are trying to catalog metallic surface changes at the nanoscale, the picture becomes more complex. Understanding the details of these phase transitions is essential for predicting material properties that may be of interest for practical applications.

Zhigilei's team uses supercomputers to simulate these phase transformations at atomic scales. To create meaningful simulations, though, the team needs to simulate millions or, in some cases, billions of atoms. They can then watch how atoms move over a sequence of very brief moments in time called time steps. By running long simulations consisting of millions of time steps, researchers may be able to observe all the processes happening during a laser-metal interaction during a total time of several nanoseconds (each nanosecond is one-billionth of a second). The team recently ran a 2.8 billion-atom simulation of silver for 3.2 nanoseconds, allowing it to compare for the first time the frozen surface's morphology--its surface structure--to experimental data.

Novel nanostructures from metal morphology

Lasers can imbue metals with many novel properties. One way to do this is to use laser ablation, or the process of selectively removing small amounts of material, thus changing the surface morphology and microstructure. While often invisible to the human eye, this process can make major changes to a metal's characteristics. Laser ablation irradiates the surface of metal in a quick, violent interaction, creating very tiny explosions of particles being removed from the material. As the metal cools, it exhibits new properties, depending on the process.

Engineers can use lasers to influence how a metal surface interacts with water--forcing water to roll off the surface in a certain direction, for instance. Researchers can create black surfaces on metals without using paint or other synthetic materials. Short laser pulses can also locally modify the hardness of metals; for increased flexibility, engineers can make a hard outer shell of a metal sample while keeping the inside softer.

In many cases, metal processing occurs in a vacuum, thus allowing engineers to prevent contaminants from getting into the processed material. Though the Zhigilei team focused primarily on simulating metal-laser interactions in a vacuum, the computing time awarded through the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program allowed the team to simulate these processes in more complex scenarios, as well. "Laser ablation in liquids, in particular, is actively used for generation of clean colloidal nanoparticles [nanoparticles that are insoluble and evenly dispersed in a solvent] with unique shapes and functionalities suitable for applications in various fields, including biomedicine, chemical catalysis, and plasmonics," said team member and University of Virginia graduate student Cheng-Yu Shih.

"While, experimentally, the liquid environment has been demonstrated to strongly affect the nanoparticle size distributions and microstructure of laser-modified surfaces, the physical mechanisms of laser surface modification and ablation in liquids are still poorly understood. The interaction of the ablation plume [a cloud of metal vapor and small droplets ejected from the irradiated target] with the liquid environment adds an additional layer of complexity to the laser ablation. Atomistic simulations help shed light on the initial, very critical stage of ablation plume and liquid interaction and predict the subsequent nanoparticle formation mechanisms at the atomic level. With access to the INCITE resources, it becomes possible to address the challenging problem of atomistic modeling of nanoparticle generation by laser ablation in liquids," Shih continued.

The team's ability to expand its simulations came from equipping its code to use accelerators like Titan's GPUs. During the course of its INCITE project, the team worked with OLCF scientific computing liaison Mark Berrill and OLCF user support staff to improve hybrid code performance.

As a result, the team was able to achieve a sevenfold speedup over CPU-only methods. These speedups helped the team run larger, more complex simulations and expand the study into the simulations of metal processing outside of a vacuum. In addition, OLCF staff helped the team optimize its codes' I/O performance by implementing the Adaptive I/O System (ADIOS) middleware into the code.

The team also worked with OLCF computer scientist Benjamin Hernandez to help with visualization of atomic configurations that consist of billions of atoms.

The team attributes a variety of computational resources to its success. "With a highly optimized computer code that runs in parallel on thousands of computer nodes and fully utilizes the capabilities of modern computing technology, including low latency and high bandwidth interconnects between the nodes and high performance GPU accelerators, it is now possible to address the most ambitious and incredibly challenging computational problems in our field," said team member and University of Virginia graduate student Maxim Shugaev.

Moving into the next year of its INCITE award, the team plans to focus on laser-metal interactions in liquids to gain a complete picture of how surface tension, critical temperature, pressure, and differing environments control metal surface morphology and microstructure.

###

Related Publications: M. V. Shugaev, C. Wu, O. Armbruster, A. Naghilou, N. Brouwer, D. S. Ivanov, T. J.-Y. Derrien, N. M. Bulgakova, W. Kautek, B. Rethfeld, and L. V. Zhigilei, "Fundamentals of Ultrafast Laser-Material Interaction." MRS Bulletin 41, no. 12 (2016): 960-968.

C.-Y. Shih, C. Wu, M. V. Shugaev, and L. V. Zhigilei, "Atomistic Modeling of Nanoparticle Generation in Short Pulse Laser Ablation of Thin Metal Films in Water." Journal of Colloid Interface Science 489 (2017): 3-17.

Oak Ridge National Laboratory is supported by the US Department of Energy's Office of Science. The single largest supporter of basic research in the physical sciences in the United States, the Office of Science is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Media Contact

Jonathan Hines
hinesjd@ornl.gov
865-574-6944

 @ORNL

http://www.ornl.gov 

Jonathan Hines | EurekAlert!

Further reports about: INCITE Laser OLCF liquids metal processing morphology nanoparticle

More articles from Materials Sciences:

nachricht Atomic structure of ultrasound material not what anyone expected
21.02.2018 | North Carolina State University

nachricht Hidden talents: Converting heat into electricity with pencil and paper
20.02.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>