Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop new way to manufacture nanofibers

21.05.2015

Researchers at the University of Georgia have developed an inexpensive way to manufacture extraordinarily thin polymer strings commonly known as nanofibers. These polymers can be made from natural materials like proteins or from human-made substances to make plastic, rubber or fiber, including biodegradable materials.

The new method, dubbed "magnetospinning" by the researchers, provides a very simple, scalable and safe means for producing very large quantities of nanofibers that can be embedded with a multitude of materials, including live cells and drugs.


Researchers at the University of Georgia have developed an inexpensive way to manufacture nanofibers. The new method, dubbed 'magnetospinning,' provides a very simple, scalable and safe means for producing very large quantities of nanofibers that can be embedded with a multitude of materials, including live cells and drugs.

Credit: Cal Powell/UGA

Many thousands of times thinner than the average human hair, nanofibers are used by medical researchers to create advanced wound dressings--and for tissue regeneration, drug testing, stem cell therapies and the delivery of drugs directly to the site of infection. They are also used in other industries to manufacture fuel cells, batteries, filters and light-emitting screens.

"The process we have developed makes it possible for almost anyone to manufacture high-quality nanofibers without the need for expensive equipment," said Sergiy Minko, study co-author and the Georgia Power Professor of Polymers, Fibers and Textiles in UGA's College of Family and Consumer Sciences. "This not only reduces costs, but it also makes it possible for more businesses and researchers to experiment with nanofibers without worrying too much about their budget."

Currently, the most common nanofiber manufacturing technique--electrospinning--uses high-voltage electricity and specially designed equipment to produce the polymer strings. Equipment operators must have extensive training to use the equipment safely.

"In contrast to other nanofiber spinning devices, most of the equipment used in our device is very simple," Minko said. "Essentially, all you need is a magnet, a syringe and a small motor."

At laboratory scale, a very simple handcrafted setup is capable of producing spools containing hundreds of yards of nanofibers in a matter of seconds. Polymer that has been melted or liquefied in a solution is mixed with biocompatible iron oxide or another magnetic material and placed inside a hypodermic needle. This needle is then positioned near a magnet that is fixed atop a spinning circular platter. As the magnet passes by the tip of the needle, a droplet of the polymer fluid stretches out and attaches to the magnet, forming a nanofiber string that winds around the platter as it continues to spin.

The device can spin at more than 1,000 revolutions per minute, enough time to create more than 50 kilometers--or about 31 miles--of ultra-thin nanofiber.

It's a relatively simple process, but it produces a very high-quality product, said Alexander Tokarev, paper co-author and postdoctoral research associate in Minko's lab.

"The product we can make is just as thin and just as strong as nanofibers created through other methods," he said. "Plus, users don't have to worry about the safety issues of using high voltages or the complexity of other machines."

The researchers can use this method to create a variety of nanofibers simply by changing the polymer placed in the syringe. They can, for example, create specially designed nanofibers that will promote the growth of stem cells. Fibers like these are currently used to create scaffolding for lab-grown tissues and organs.

Nanofibers can also be loaded with proteins, nanotubes, fluorescent materials and therapeutic agents.

"We can use almost any kind of polymer with this platform, and we can tailor make the nanofibers for different applications," Minko said. "It's like cooking. We just change the ingredients a bit, and the kind of fiber we get is very different."

###

The University of Georgia Research Foundation Inc. has filed a patent application on this new method.

The study is available at http://onlinelibrary.wiley.com/doi/10.1002/adma.201500374/full. A video of the process is available at https://youtu.be/CwxkAr74QQc.

Media Contact

Sergiy Minko
sminko@uga.edu
706-542-3122

 @universityofga

http://www.uga.edu 

Sergiy Minko | EurekAlert!

More articles from Materials Sciences:

nachricht One in 5 materials chemistry papers may be wrong, study suggests
15.12.2017 | Georgia Institute of Technology

nachricht Scientists channel graphene to understand filtration and ion transport into cells
11.12.2017 | National Institute of Standards and Technology (NIST)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>