Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sweet and environmentally beneficial discovery: Plastics made from orange peel and a greenhouse gas

18.01.2005


A Cornell University research group has made a sweet and environmentally beneficial discovery -- how to make plastics from citrus fruits, such as oranges, and carbon dioxide.

In a paper published in a recent issue of the Journal of the American Chemical Society (Sept. 2004), Geoffrey Coates, a Cornell professor of chemistry and chemical biology, and his graduate students Chris Byrne and Scott Allen describe a way to make polymers using limonene oxide and carbon dioxide, with the help of a novel "helper molecule" -- a catalyst developed in the researchers’ laboratory.

Limonene is a carbon-based compound produced in more than 300 plant species. In oranges it makes up about 95 percent of the oil in the peel. In industry, Coates explains, the orange peel oil is extracted for various uses, such as giving household cleaners their citrus scent. The oil can be oxidized to create limonene oxide. This is the reactive compound that Coates and his collaborators used as a building block.



The other building block they used was carbon dioxide (CO2), an atmospheric gas that has been rising steadily over the past century and a half -- due largely to the combustion of fossil fuels -- becoming an environmentally harmful greenhouse gas. By using their catalyst to combine the limonene oxide and CO2, the Coates group produced a novel polymer -- called polylimonene carbonate -- that has many of the characteristics of polystyrene, a petroleum-based plastic currently used to make many disposable plastic products. "The polymer is a repeating unit, much like a strand of paper dolls. But instead of repeating dolls, the components alternate between limonene oxide and CO2 -- in the polymer," says Coates. Neither limonene oxide nor CO2 form polymers on their own, but when put together, a promising product is created.

"Almost every plastic out there, from the polyester in clothing to the plastics used for food packaging and electronics, goes back to the use of petroleum as a building block," Coates observes. "If you can get away from using oil and instead use readily abundant, renewable and cheap resources, then that’s something we need to investigate. What’s exciting about this work is that from completely renewable resources, we were able to make a plastic with very nice qualities."

The Coates research team is particularly interested in using CO2 as an alternative building block for polymers. Instead of being pumped into the atmosphere as a waste product, CO2 could be isolated for use in producing plastics, such as polylimonene carbonate.

The Coates laboratory comprises 18 chemists, about half of them striving to make recyclable and biodegradable materials out of cheap, readily available and environmentally friendly building blocks. "Today we use things once and throw them away because plastics are cheap and abundant. It won’t be like that in the future," says Coates. "At some point we will look back and say, ’Wow, remember when we would take plastic containers and just throw them away?’"

The research was supported by the Packard Foundation fellowship program, the National Science Foundation, the Cornell Center for Materials Research and the Cornell University Center for Biotechnology.

Reported and written by graduate student Sarah Davidson, a science writer intern with Cornell News Service.

David Brand | EurekAlert!
Further information:
http://www.cornell.edu
http://www.chem.cornell.edu/gc39

More articles from Materials Sciences:

nachricht Scientists create innovative new 'green' concrete using graphene
24.04.2018 | University of Exeter

nachricht Neutrons provide insights into increased performance for hybrid perovskite solar cells
24.04.2018 | DOE/Oak Ridge National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

Scientists create innovative new 'green' concrete using graphene

24.04.2018 | Materials Sciences

BAM@Hannover Messe: innovative 3D printing method for space flight

24.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>