Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reliable molecular toggle switch developed

30.03.2017

New dimension of miniaturized electronic components -- switch can be operated as often as desired -- future circuits may be a hundred times smaller

Nanotechnology constantly allows for new records in miniaturization. Reduction of the dimension of electronic components, however, has physical limits that will be reached soon. Novel materials and components are required. This is where molecular electronics comes in. Scientists of Karlsruhe Institute of Technology (KIT) have now succeeded in developing a molecular toggle switch that does not only remain in the position selected, but can also be flipped as often as desired. This is reported in Nature Communications.


The molecular contact can be switched on and off mechanically and electrostatically.

(Photo: KIT)

"By replacing conventional silicon-based components, e.g. a switch, by individual molecules, future electronic circuits might be integrated on a space smaller by a factor of 100," Lukas Gerhard of KIT's Institute of Nanotechnology says.

The basic structure of the electromechanical switch consists of a few carbon atoms. Three sulfur atoms form the feet that are fixed to a smooth gold surface. The toggle lever ends in a nitrile group with a nitrogen atom. It is flipped when voltage is applied. The resulting electric field exerts a force on the charge of the nitrogen atom. In this way, contact to a second electrode (here, the gold tip of a scanning tunneling microscope) is established.

The complete switch measures not more than a nanometer. For comparison: The smallest structures used in semiconductor technology are 10 nm in dimension. "Molecular electronics, hence, would be big progress," Gerhard says.

It is not only the size of the switch that is remarkable, but the fact that it works reliably and foreseeably. This means that its operation always leads to a switching state. The contact is either open or closed. So far, implementation of this principle has often failed due to insufficient controllability of electric contacting of individual molecules. For the first time, KIT researchers have now succeeded in opening and closing such a contact between a molecule and a gold tip electrically and mechanically as often as desired, without plastic deformation being caused.

In the opinion of Gerhard, progress in synthetic chemistry has resulted in the possibility of making available a large variety of billions of molecular building blocks of identical atomic design. "Their interconnection, however, requires them to be touched without being damaged." Such a gentle method has now be found and Gerhard considers this to be the decisive novelty.

###

This publication is the result of close cooperation between experimental physicists and chemists of KIT's Institute of Nanotechnology and of the University of Basel and theoretical physicists of the University of Konstanz.

Karlsruhe Institute of Technology (KIT) pools its three core tasks of research, higher education, and innovation in a mission. With about 9,300 employees and 25,000 students, KIT is one of the big institutions of research and higher education in natural sciences and engineering in Europe.

KIT - The Research University in the Helmholtz Association

Media Contact

Monika Landgraf
presse@kit.edu
49-721-608-47414

 @KITKarlsruhe

http://www.kit.edu/index.php

Monika Landgraf | EurekAlert!

More articles from Materials Sciences:

nachricht Cementless fly ash binder makes concrete 'green'
19.06.2018 | Rice University

nachricht Ground-breaking discoveries could create superior alloys with many applications
19.06.2018 | Chalmers University of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>