Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reliable in-line inspections of high-strength automotive body parts within seconds

09.10.2015

Nondestructive material testing (NDT) is a fast and effective way to analyze the quality of a product during the manufacturing process. Because defective materials can lead to malfunctioning finished products, NDT is an essential quality assurance measure, especially in the manufacture of safety-critical components such as automotive B-pillars. NDT examines the quality without damaging the component or modifying the surface of the material. At this year's Blechexpo trade fair in Stuttgart, Fraunhofer IZFP will have an exhibit that demonstrates the nondestructive testing of high-strength automotive body parts using 3MA. The measurement results are available in a matter of seconds.

To minimize vehicle weight and fuel consumption while providing the highest level of crash safety, automotive bodies are reinforced with elements made from high-strength steel. Automotive manufacturers and suppliers are relying more and more on so-called hot stamping or press hardened processes to produce these components.


Reliable in-line 3MA inspection results within seconds

Fraunhofer IZFP/Uwe Bellhäuser

Fraunhofer IZFP has developed a fast and low-cost 3MA nondestructive testing technique that can be used to monitor and control the corresponding manufacturing processes. "Time-consuming destructive testing methods result in enormous quality assurance costs, because among things the product is destroyed in the process.

And since it's only possible to carry out spot checks, problems with the manufacturing process are often detected only after a significant number of rejects are generated," says Dr. Bernd Wolter, head of the Production-integrated NDT department at Fraunhofer IZFP. Suitable nondestructive testing processes offer an alternative that over the long term can be adapted and utilized as a replacement for destructive methods.

The 3MA inspection technology developed by Fraunhofer IZFP is well-suited for measuring positions that cannot be inspected with destructive processes, such as when there is simply no space to carry out the measurements (tension rods as an example).

"We can ensure 100 percent testability during the production process. That eliminates the need for time-consuming spot checks. Our researchers and engineers developed and certified this inspection method for use in high-volume automobile production systems. This inline, nondestructive process can be automated, a feature that is clearly to unique to Fraunhofer IZFP," emphasizes Wolter.

By combining four micro-magnetic inspection processes - harmonic analysis, incremental permeability, Barkhausen noise analysis and multi-frequency eddy current - this approach provides a fast and simple way to determine the quality of essential mechanical properties such as hardness, tensile strength and diffusion layer thickness.

The exhibit will illustrate several specific capabilities related to the monitoring and inspecting of manufacturing processes, press-hardened products, valve spring production and rolled steel manufacture, with a focus on production processes in the automobile, steel production and machine/plant engineering industries.

Weitere Informationen:

http://www.izfp.fraunhofer.de

Sabine Poitevin-Burbes | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

More articles from Materials Sciences:

nachricht Physics, photosynthesis and solar cells
01.12.2016 | University of California - Riverside

nachricht New process produces hydrogen at much lower temperature
01.12.2016 | Waseda University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>