Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reliable in-line inspections of high-strength automotive body parts within seconds

09.10.2015

Nondestructive material testing (NDT) is a fast and effective way to analyze the quality of a product during the manufacturing process. Because defective materials can lead to malfunctioning finished products, NDT is an essential quality assurance measure, especially in the manufacture of safety-critical components such as automotive B-pillars. NDT examines the quality without damaging the component or modifying the surface of the material. At this year's Blechexpo trade fair in Stuttgart, Fraunhofer IZFP will have an exhibit that demonstrates the nondestructive testing of high-strength automotive body parts using 3MA. The measurement results are available in a matter of seconds.

To minimize vehicle weight and fuel consumption while providing the highest level of crash safety, automotive bodies are reinforced with elements made from high-strength steel. Automotive manufacturers and suppliers are relying more and more on so-called hot stamping or press hardened processes to produce these components.


Reliable in-line 3MA inspection results within seconds

Fraunhofer IZFP/Uwe Bellhäuser

Fraunhofer IZFP has developed a fast and low-cost 3MA nondestructive testing technique that can be used to monitor and control the corresponding manufacturing processes. "Time-consuming destructive testing methods result in enormous quality assurance costs, because among things the product is destroyed in the process.

And since it's only possible to carry out spot checks, problems with the manufacturing process are often detected only after a significant number of rejects are generated," says Dr. Bernd Wolter, head of the Production-integrated NDT department at Fraunhofer IZFP. Suitable nondestructive testing processes offer an alternative that over the long term can be adapted and utilized as a replacement for destructive methods.

The 3MA inspection technology developed by Fraunhofer IZFP is well-suited for measuring positions that cannot be inspected with destructive processes, such as when there is simply no space to carry out the measurements (tension rods as an example).

"We can ensure 100 percent testability during the production process. That eliminates the need for time-consuming spot checks. Our researchers and engineers developed and certified this inspection method for use in high-volume automobile production systems. This inline, nondestructive process can be automated, a feature that is clearly to unique to Fraunhofer IZFP," emphasizes Wolter.

By combining four micro-magnetic inspection processes - harmonic analysis, incremental permeability, Barkhausen noise analysis and multi-frequency eddy current - this approach provides a fast and simple way to determine the quality of essential mechanical properties such as hardness, tensile strength and diffusion layer thickness.

The exhibit will illustrate several specific capabilities related to the monitoring and inspecting of manufacturing processes, press-hardened products, valve spring production and rolled steel manufacture, with a focus on production processes in the automobile, steel production and machine/plant engineering industries.

Weitere Informationen:

http://www.izfp.fraunhofer.de

Sabine Poitevin-Burbes | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

More articles from Materials Sciences:

nachricht An innovative high-performance material: biofibers made from green lacewing silk
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Treated carbon pulls radioactive elements from water
20.01.2017 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>