Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

RAWIS: The Next Generation of Automated Inspection Systems for Railway Wheels

07.06.2016

Fraunhofer IZFP offers its customers and research partners the entire range of nondestructive testing technologies, whether it involves basic or applied research. The institute's researchers, engineers and technicians develop solutions to address modern testing applications including feasibility studies, consulting, training and inspection services and creating prototype systems. From June 13 to 17, 2016, our researchers and engineers present the next generation of automated inspection systems for railway wheels at the World Conference on Non-Destructive Testing (WCNDT) in Munich.

Railway wheels are exposed to great dynamic stress. For this reason, they need to be subjected to non-destructive testing during the manufacturing process with the aim of detecting material flaws that may have been caused during manufacture.


Next Generation Train

DLR

In accordance with the current state of technology, the testing is carried out using automated inspection systems.

The challenge was to design a system which guarantees a sensitivity of FBH 1 mm, a dead zone of 5 mm beneath the test surfaces and a cycle time between 60 to 90 seconds.

This makes high demands on the ultrasonic inspection technology. To reduce the mechanical outlay, allow optimum coverage of the prescribed inspection areas and enable flexible configuration of the inspection technology with regard to the wide range of different wheel geometries, phased array probes are used for the inspection of the wheel rim and wheel hub, whilst squirter probes guided by robots are used for the inspection of the discs.

In order to be able to cover the prescribed inspection areas when the beam is being directed into the rim axially and radially and into the hub from both sides for all the wheel types occurring at the manufacturer's works, phased array probes designed specially for this inspection problem, with 64 and 128 elements (linear arrays), have been developed.

In the case of the hub in particular, the challenge consisted in finding a suitable configuration of the phased array probes, in order at the same time to cater to both the small dead zone and the large inspection area of up to 300 mm within a single test cycle.

It was also necessary to develop a suitable probe carrier which would make constant coupling possible through a water gap in spite of the large active aperture of the probes.

In wheel requalification, examination of the disc is also required. Here the challenge involves recording the geometry, which may be complex, and then carrying out the inspection.

Contoured wheel discs in particular make it more difficult to determine the contour data and carry out the ultrasonic inspection, and call for solutions that are sophisticated in terms of the inspection technology they use. This paper aims to provide an introduction to robot-aided contour recording and ultrasonic testing using squirter probes.

Weitere Informationen:

http://www.izfp.fraunhofer.de

Sabine Poitevin-Burbes | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

More articles from Materials Sciences:

nachricht Scientist invents way to trigger artificial photosynthesis to clean air
26.04.2017 | University of Central Florida

nachricht Researchers invent process to make sustainable rubber, plastics
25.04.2017 | University of Delaware

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>