Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum spin could create unstoppable, one-dimensional electron waves

19.11.2015

New theory points the way forward to transform atom-thin materials into powerful conductors

In certain nanomaterials, electrons are able to race through custom-built roadways just one atom wide. To achieve excellent efficiency, these one-dimensional paths must be paved with absolute perfection--a single errant atom can stop racing electrons in their tracks or even launch it backwards. Unfortunately, such imperfections are inevitable.

Now, a pair of scientists from the U.S. Department of Energy's Brookhaven National Laboratory and Ludwig Maximilian University in Munich have proposed the first solution to such subatomic stoppage: a novel way to create a more robust electron wave by binding together the electron's direction of movement and its spin. The trick, as described in a paper published November 16 in Physical Review Letters and featured as an Editor's Selection, is to exploit magnetic ions lacing the electron racetrack. The theory could drive advances in nanoscale engineering for data- and energy-storage technologies.

"One-dimensional materials can only be very good conductors if they are defect-free, but nothing in this world is perfect," said Brookhaven physicist Alexei Tsvelik, one of two authors on the paper. "Our theory, the first of its kind, lays out a way to protect electron waves and optimize these materials."

The work relies on a model system called a Kondo chain, where flowing electrons interact with local magnetic moments within a material. Properly harnessed, this powerful interaction could allow materials to behave like perfect conductors and offer high efficiency.

Protecting the transport

Atom-wide channels only allow motion in one of two opposing directions: right or left. Electrons traveling through such a narrow path--racing along in what are called charge-density waves--can be easily reversed by virtually any obstacle.

"The wave rises like an electronic tsunami that is expected to carry electrons smoothly in one direction," Tsvelik said. "But it turns out that this tsunami can be very easily pinned by disorder, by impurities in the material."

This "tsunami" shifts direction through a conductivity-smothering phenomenon called backscattering--like a wave breaking against sheer cliffs. But while direction is easily reversed, another feature of the electron is much more resilient: spin. The spin of an electron--like a perpetually spinning quantum top--can only be described as either up or down, and it is impervious to simple imperfections in the material. The trick, then, is to teach the directional wave to lean on spin for support.

"As the electrons flow, they interact with magnetic moments embedded in the material--these pockets of intrinsic magnetism are the key to producing the bound state," said Ludwig Maximilian University physicist Oleg Yevtushenko, the other collaborator on the paper. "The magnetic moments bind spin and direction tightly together, so any disturbance would need to flip the electron's spin in order to change its direction."

These rolling electron waves could then be described as right-moving with spin up, left-moving with spin down, and so on. In each instance, the direction is bolstered by spin.

Building an electron bicycle

Imagine walking along a narrow path barely wide enough for both feet. In such a simple system, turning around is easy--one can pivot around at the slightest provocation.

"But what if we give our pedestrian a bicycle?" Tsvelik said. "It suddenly becomes very difficult to break that angular momentum and change directions--especially on such a narrow path. This bound spin-direction state is like our electron's bicycle, keeping it rolling along powerfully enough to overcome bumps in the one-dimensional road."

To verify the efficacy of this theoretical electron bicycle, scientists will need to apply this theory to stringent tests.

"The magnetic ions in materials such as cesium, iron, and manganese all make excellent candidates for generating and exploring this promising bound state," Yevtushenko said.

The process of synthesizing functional one-dimensional materials--as thin metallic wires or paths conjured by chemistry--continues to evolve and push both theory and industry forward. Scientists in Brookhaven Lab's Condensed Matter Physics and Materials Science Department and Center for Functional Nanomaterials specialize in similar one-of-a-kind atomic architectures.

"We hope our colleagues will leap at this challenge, especially as it's the only method proposed to enhance flow at this 1D scale," Tsvelik said. "Who knows where these fundamental concepts might lead? The wonder of science is that it brings surprise."

###

This work was funded by the DOE Office of Science.

Brookhaven National Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation for the State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit applied science and technology organization.

Related Links

Scientific paper: "Quantum Phase Transition and Protected Ideal Transport in a Kondo Chain" [http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.115.216402]

Media Contact

Karen McNulty Walsh
kmcnulty@bnl.gov
631-344-8350

 @brookhavenlab

http://www.bnl.gov 

Karen McNulty Walsh | EurekAlert!

Further reports about: Electrons Energy QUANTUM bicycle electron waves material technologies waves

More articles from Materials Sciences:

nachricht Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging
24.04.2017 | Pohang University of Science & Technology (POSTECH)

nachricht Wonder material? Novel nanotube structure strengthens thin films for flexible electronics
24.04.2017 | University of Illinois College of Engineering

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>