Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum spin could create unstoppable, one-dimensional electron waves

19.11.2015

New theory points the way forward to transform atom-thin materials into powerful conductors

In certain nanomaterials, electrons are able to race through custom-built roadways just one atom wide. To achieve excellent efficiency, these one-dimensional paths must be paved with absolute perfection--a single errant atom can stop racing electrons in their tracks or even launch it backwards. Unfortunately, such imperfections are inevitable.

Now, a pair of scientists from the U.S. Department of Energy's Brookhaven National Laboratory and Ludwig Maximilian University in Munich have proposed the first solution to such subatomic stoppage: a novel way to create a more robust electron wave by binding together the electron's direction of movement and its spin. The trick, as described in a paper published November 16 in Physical Review Letters and featured as an Editor's Selection, is to exploit magnetic ions lacing the electron racetrack. The theory could drive advances in nanoscale engineering for data- and energy-storage technologies.

"One-dimensional materials can only be very good conductors if they are defect-free, but nothing in this world is perfect," said Brookhaven physicist Alexei Tsvelik, one of two authors on the paper. "Our theory, the first of its kind, lays out a way to protect electron waves and optimize these materials."

The work relies on a model system called a Kondo chain, where flowing electrons interact with local magnetic moments within a material. Properly harnessed, this powerful interaction could allow materials to behave like perfect conductors and offer high efficiency.

Protecting the transport

Atom-wide channels only allow motion in one of two opposing directions: right or left. Electrons traveling through such a narrow path--racing along in what are called charge-density waves--can be easily reversed by virtually any obstacle.

"The wave rises like an electronic tsunami that is expected to carry electrons smoothly in one direction," Tsvelik said. "But it turns out that this tsunami can be very easily pinned by disorder, by impurities in the material."

This "tsunami" shifts direction through a conductivity-smothering phenomenon called backscattering--like a wave breaking against sheer cliffs. But while direction is easily reversed, another feature of the electron is much more resilient: spin. The spin of an electron--like a perpetually spinning quantum top--can only be described as either up or down, and it is impervious to simple imperfections in the material. The trick, then, is to teach the directional wave to lean on spin for support.

"As the electrons flow, they interact with magnetic moments embedded in the material--these pockets of intrinsic magnetism are the key to producing the bound state," said Ludwig Maximilian University physicist Oleg Yevtushenko, the other collaborator on the paper. "The magnetic moments bind spin and direction tightly together, so any disturbance would need to flip the electron's spin in order to change its direction."

These rolling electron waves could then be described as right-moving with spin up, left-moving with spin down, and so on. In each instance, the direction is bolstered by spin.

Building an electron bicycle

Imagine walking along a narrow path barely wide enough for both feet. In such a simple system, turning around is easy--one can pivot around at the slightest provocation.

"But what if we give our pedestrian a bicycle?" Tsvelik said. "It suddenly becomes very difficult to break that angular momentum and change directions--especially on such a narrow path. This bound spin-direction state is like our electron's bicycle, keeping it rolling along powerfully enough to overcome bumps in the one-dimensional road."

To verify the efficacy of this theoretical electron bicycle, scientists will need to apply this theory to stringent tests.

"The magnetic ions in materials such as cesium, iron, and manganese all make excellent candidates for generating and exploring this promising bound state," Yevtushenko said.

The process of synthesizing functional one-dimensional materials--as thin metallic wires or paths conjured by chemistry--continues to evolve and push both theory and industry forward. Scientists in Brookhaven Lab's Condensed Matter Physics and Materials Science Department and Center for Functional Nanomaterials specialize in similar one-of-a-kind atomic architectures.

"We hope our colleagues will leap at this challenge, especially as it's the only method proposed to enhance flow at this 1D scale," Tsvelik said. "Who knows where these fundamental concepts might lead? The wonder of science is that it brings surprise."

###

This work was funded by the DOE Office of Science.

Brookhaven National Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation for the State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit applied science and technology organization.

Related Links

Scientific paper: "Quantum Phase Transition and Protected Ideal Transport in a Kondo Chain" [http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.115.216402]

Media Contact

Karen McNulty Walsh
kmcnulty@bnl.gov
631-344-8350

 @brookhavenlab

http://www.bnl.gov 

Karen McNulty Walsh | EurekAlert!

Further reports about: Electrons Energy QUANTUM bicycle electron waves material technologies waves

More articles from Materials Sciences:

nachricht Decoding cement's shape promises greener concrete
08.12.2016 | Rice University

nachricht Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D
08.12.2016 | DOE/Brookhaven National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>