Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum dots light the way

21.07.2015

A drug-encapsulating nanoparticle teams up with bright bio-labels to measure how anticancer chemotherapy formulations enter cells

Polymer nanoparticles that release medicine at controlled rates inside cells have the potential to enhance the efficacy of many clinical drugs. A*STAR researchers have now developed an eye-catching way to evaluate the performance of different polymer drug-delivery formulations using luminescent quantum dots as imaging labels1.


Confocal images of quantum dots localized within colon cells can guide the development of innovative drug delivery formulations.

Reproduced, with permission, from Ref. 1 © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Tiny, inorganic quantum-dot crystals are finding increasing use as biological probes due to their powerful optical characteristics. By stimulating the dots with laser light, researchers can obtain sharp images to monitor processes such as drug delivery for much longer time frames than nearly any other technique. However, a key challenge lies in incorporating hydrophobic quantum dots into biocompatible, water-soluble polymers.

Ming-Yong Han and co-workers from the A*STAR Institute of Materials Research and Engineering in Singapore turned to a copolymer known as poly(D,L-lactide-co-glycolide), or PLGA, for their quantum-dot imaging strategy. This non-toxic material has tunable water-repelling or water-attracting ability, depending on the proportion of lactic and glycolic acid components. It is also an ideal drug delivery platform for the popular anticancer drug doxorubicin — a fluorescent molecule used to treat diseases including leukemia and Hodgkin’s lymphoma.

“The choice of polymer and nanoparticle preparations plays an important role in making uniformly fluorescent particles,” says co-author Choon Peng Teng. “Different hydrophobic or hydrophilic interactions affect how quantum dots are incorporated.”

The team synthesized two kinds of PLGA nanoparticles — one loaded with doxorubicin, and the other containing quantum-dot bio-labels — and incubated them in a culture of human colon cells. After two hours, confocal imaging revealed that both kinds of polymer nanoparticles were engulfed by the cells through an endocytosis mechanism and internalized into the cytoplasm (see image). The bright emissions from the dots enabled the researchers to quantify the uptake as 25 per cent of the cell volume.

Since the behavior of the quantum dot-labeled nanoparticles paralleled the doxorubicin-impregnated materials, Han and colleagues realized this imaging system could model the effectiveness of other important drug-delivery schemes. Initial investigations appear promising — the quantum-dot-loaded PLGA nanoparticles mimicked different drug-delivery systems for targeting brain, lung and breast cancer cell lines, and were compatible with both water-soluble and water-insoluble drugs.

One further advantage of this approach, notes co-author Khin Yin Win, is that it can simulate the action of non-fluorescent anticancer drugs previously untraceable with confocal imaging. “This model can facilitate monitoring biocompatibility and cellular uptake, but it can also evaluate how feasible certain materials are as drug carriers,” she says. “This could lead to more innovative drug-delivery systems.”

The A*STAR-affiliated researchers contributing to this research are from the Institute of Materials Research and Engineering. More information about the group’s research can be found at the Synthesis & Integration group webpage.

Reference
Win, K. Y., Teng, C. P., Ye, E., Low, M. & Han, M.-Y. Evaluation of polymeric nanoparticle formulations by effective imaging and quantitation of cellular uptake for controlled delivery of doxorubicin. Small 11, 1197–1204 (2015). | article

A*STAR Research | ResearchSEA
Further information:
http://www.research.a-star.edu.sg/research/7324
http://www.researchsea.com

More articles from Materials Sciences:

nachricht New design improves performance of flexible wearable electronics
23.06.2017 | North Carolina State University

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

For a chimpanzee, one good turn deserves another

27.06.2017 | Life Sciences

Collapse of the European ice sheet caused chaos

27.06.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>