Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purity Characterization of Aluminium Melts by Ultrasonic Scattering Measurements

07.06.2016

The Fraunhofer Institute for Nondestructive Testing IZFP carries out research and development activities in the field of nondestructive testing processes along the entire materials value chain. For customers in the automobile, aerospace, rail, energy, construction and agriculture industries, the institute offers a wide range of NDT expertise and technologies. From June 13 to 17, 2016, our researchers and engineers will present first results from measurements on a model suspension concerning purity characterization of Aluminium melts by ultrasonic scattering at the 19th World Conference on Non-Destructive Testing (WCNDT) in Munich.

The use of Aluminium cast materials in industrial applications has a rising trend in Germany. One reason is the low density combined with the high specific mechanical strength. Another reason is the good machinability and corrosion resistance of this material group.


AIR-COUPLED ULTRASOUND INSPECTION

Fraunhofer IZFP/Uwe Bellhäuser

The growing trend towards lightweight construction results in components made of aluminium casting alloys with wall thicknesses getting thinner and thinner. That’s the reason why non-metallic inclusions are tolerated less and less. Most frequently oxides and carbides occur as such non-metallic inclusions.

Those impurities in the manufacture of castings are the most common defects, which entail costly cleaning methods to avoid defective goods. Therefore, a test device to detect impurities in the form of oxides with 20-300 µm in diameter is now being developed at the Fraunhofer IZFP. Characterizing the purity of the melt, the manufacturers can apply a specific cleaning.

At the WCNDT first results from measurements on a model suspension consisting of water and PMMA spheres will be discussed and presented. The advantage is that in a simple manner defined particles can be introduced and difficulties, caused by high temperatures, are bypassed first.

One important step was the determination of the optimal test frequency with knowledge of the ultrasonic scattering theory. Numerical calculations from analytical solutions of the scattering theory and measurement results could be compared.

Thus we will be able to determine the particle size and quantity from ultrasonic amplitude signals. Taking account of different melt qualities we are able to measure with two different methods.

The first one is suitable for melts with an impurity of more than 0.05 Vol% and is based on a multiple scattering model.

To detect less than 50000 particles/kg aluminium melting a single scattering approach is used. For further tests in aluminium melts the development of a wave guide has to be done.

Weitere Informationen:

http://www.izfp.fraunhofer.de

Sabine Poitevin-Burbes | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

More articles from Materials Sciences:

nachricht Atomic structure of ultrasound material not what anyone expected
21.02.2018 | North Carolina State University

nachricht Hidden talents: Converting heat into electricity with pencil and paper
20.02.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

'Icebreaker' protein opens genome for t cell development, Penn researchers find

21.02.2018 | Health and Medicine

MEMS chips get metatlenses

21.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>