Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Production without release agents

03.03.2015

The Infiana Group and Fraunhofer IFAM have agreed upon an exclusive cooperation for the production and marketing of FlexPlas® release film.

Even more innovative together: Scientists of the Fraunhofer Institute for Manufacturing Technology and Advanced Materials (IFAM) and experts of the Infiana Group are jointly working on the further development and marketing of the FlexPlas® technology, an elastic release film.


FlexPlas® release film reduces material costs and increases productivity.

© Infiana Group

It optimizes the production of composites parts - complex large structures of fiber-reinforced plastic (FRP) in particular - such as those used for manufacturing aircrafts or rotor blades for wind turbines. When using FlexPlas®, you can be assured of a safe and efficient production process, free of release agents and without any delays: the subsequent steps, for instance coating, can be taken as soon as the component is cured.

FlexPlas® release film reduces material costs and increases productivity, as the tooling can be re-used sooner after the component's demolding. So far, traditional release agents, which were applied to the surface of the mold, ensured easy removal of the components.

However, before any further processing processes could start, the remaining residues containing fluorine, wax or silicone had to be removed both from the manufactured part and the tool by means of abrading or blasting – a complex process, which not only strains the surfaces, but which is also cost-intensive. These process steps are no longer required with FlexPlas® release film. Its use can reduce relevant production costs by up to 70 percent. In addition, solventfree manufacturing saves the environment, increases working safety and protects the health of employees.

"A team of experts at our institute has developed the plasma-polymer release coating, which is applied to the highly elastic special film of the Infiana Group," Dr. Gregor Graßl, FlexPlas® Project Leader at Fraunhofer IFAM, explains. Soheila Salehi- Schneider, FlexPlas® Project Leader at Infiana, adds: "Both sides contribute their extensive expertise – a win-win situation for all of us, especially for our customers."

FlexPlas® can be used for a range of procedures (such as pre-preg technology in autoclaving, (vacuum) infusion, hand lay-up process or Resin Transfer Molding/RTM). The release film, which is extensible up to 300 percent, highly elastic and thermally stable, is applied to the mold like a second skin. After the fibrous material has been placed in the mold, the cured component can be easily removed thanks to FlexPlas®. The release film can either remain on the component as transport protection, or it can be safely and easily removed. Without any residue: each component can be further processed, for example coated.

Another advantage: applying a gel coat to the FlexPlas® release film prior to covering it with fibrous material saves additional time and energy. In addition to omitting the cleaning and grinding steps from the process, the component now no longer needs to be coated and additionally cured. The coating is cured together with the component in one production stage.

For the first time, the two cooperation partners will present FlexPlas® together at JEC Europe, the worldwide largest trade fair for composites in Paris (Booth K 35, Hall 7.2), from the 10th to the 12th of March.

Martina Ohle | Fraunhofer-Gesellschaft
Further information:
http://www.ifam.fraunhofer.de/en/Press_Releases/FlexPlas.html

More articles from Materials Sciences:

nachricht Manchester scientists tie the tightest knot ever achieved
13.01.2017 | University of Manchester

nachricht CWRU directly measures how perovskite solar films efficiently convert light to power
12.01.2017 | Case Western Reserve University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>