Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Power of marine inspiration

14.09.2015

Bioinspired carbon anodes enable high performance in lithium-ion batteries

Scientists at Singapore's Agency for Science, Technology and Research (A*STAR) have drawn on nature for a breakthrough that significantly enhances the electrochemical performance of lithium-ion batteries. The researchers have developed hierarchical porous carbon spheres to be used as anodes after being inspired by the templated formation of unicellular algae or ‘diatoms’ [1].


A transmission electron microscopy image of graphitic carbon spheres with a hierarchical pore structure. Inset: A microscopy image of a marine diatom.

Adapted with permission from Ref 1. Copyright 2015 American Chemical Society.

“In nature, a great number of microorganisms, like diatoms, can assemble biominerals into intricate hierarchical three-dimensional architectures with great structural control over nano- to millimeter length scales,” explains Xu Li, who heads the research team at the A*STAR Institute of Materials Research and Engineering. “These organisms contain organic macromolecules, which can be used as templates to induce and direct the precise precipitation of silica building blocks to form the complex structures.”

This natural phenomenon inspired Li and colleagues to develop biomimetic strategies based on self-assembled molecular templates to produce hierarchical carbon materials for use as anodic components of batteries.

These materials contain mesopores, which form an interconnected network of channels within the carbon spheres, and have a microporous surface (see image). These three-dimensional features promote ion transport and high storage capacity within the carbon spheres.

Li and the team used organic macromolecules, an aggregate of polymers and cobalt-containing molecules, as templates to make the interconnected mesopores — in a similar way that diatoms create their siliceous structure. The carbon scaffold of the spheres is derived from rings of sugar molecules, which thread on to the pendant polymer chains and form ‘soft’ carbon spheres after hydrothermal treatment.

Pyrolysis causes a cobalt species to catalyze the graphitization process, creating the ‘hard’ carbon spheres. If urea is added before pyrolysis, nitrogen-doped graphitic carbon spheres are made. “The carbon spheres can only be prepared on a laboratory scale, however, we are optimizing the synthetic conditions to scale up fabrication,” says Li.

Next, Li and co-workers tested the carbon spheres as anodes in lithium-ion batteries. The batteries showed high reversible capacity, good cycling stability and outstanding high-rate performance.

Even when the current density is increased 600-fold, 57 per cent of the original capacity is retained. The nitrogen-doped carbon spheres have a higher reversible capacity because of more facile transport of ions and electrons within the doped carbon spheres.

“These results are among the best output to date compared with pure carbon materials,” says Li. “We envisage that batteries composed of these anode materials could be charged faster than those fabricated using conventional carbon materials,” he adds.

The next stage of the research is to extend the application of these materials to other energy storage or conversion systems, and other electrochemical applications, such as electrocatalysis.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Materials Research and Engineering.

Reference

[1] Wang, S.-X., Chen, S., Wei, Q., Zhang, X., Wong, S. Y. et al. Bioinspired synthesis of hierarchical porous graphitic carbon spheres with outstanding high-rate performance in lithium-ion batteries. Chemistry of Materials 27, 336−342 (2015).


Associated links
Original article from A*STAR Research

A*STAR Research | ResearchSea
Further information:
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Graphene origami as a mechanically tunable plasmonic structure for infrared detection
25.04.2018 | University of Illinois College of Engineering

nachricht Scientists create innovative new 'green' concrete using graphene
24.04.2018 | University of Exeter

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>