Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Porous crystalline materials: TU Graz researcher shows method for controlled growth

07.12.2016

Microporous crystals (MOFs) have a great potential as functional materials of the future. Paolo Falcaro of TU Graz et al demonstrate in Nature Materials how the growth of MOFs can be precisely controlled on a large scale.

Porous crystals called metal-organic frameworks (MOFs) consist of metallic intersections with organic molecules as connecting elements. Thanks to their high porosity, MOFs have an extremely large surface area. A teaspoonful of MOFs has the same surface area as a football pitch. These countless pores situated in an extremely small space offer room for “guests” and can, for example, be used for gas storage or as “molecular gate” for separation of chemicals.


Porous cystalls called MOFs on a comparatively large surface area of one square centimetre.

© Nature Materials 2016 Falcaro et.al.


After studying and working in Italy, Australia and Japan Paolo Falcaro conducts his research at TU Graz.

© Laura Villanova

But MOFs have a much greater potential and it is what Paolo Falcaro from TU Graz’s Institute of Physical and Theoretical Chemistry (PTC) wants to unlock. “MOFs are prepared by self-organisation. We don’t have to do anything other than mix the components, and the crystals will grow by themselves. However, crystals grow with random orientation and position, and thus their pores. Now, we can control this growth, and new properties of MOFs will be explored for multifunctional use in microelectronics, optics, sensors and biotechnology.”

In the current issue of Nature Materials, a research activity lead by Paolo Falcaro and Masahide Takahashi (Osaka Prefecture University - Japan) together with Australian colleagues at the University of Adelaide, Monash University and The Commonwealth Scientific and Industrial Research Organisation (CSIRO) describes a method of growing MOFs on a comparatively large surface area of one square centimetre rapidly achieving an unprecedented controlled orientation and alignment of the crystals.

Directionally dependent properties

The big advantage of precisely oriented crystals in MOFs makes every materials scientist excited. Functional materials can be infiltrated in the pores of the crystals to generate anisotropic materials; in other words, materials with directionally dependent properties. In the journal Nature Materials, the research team shows how the controlled synthesis of a MOF film behaves in the presence of fluorescent dye. Just by rotating the film, the fluorescent signal is turned “on” or “off” and an optically active switch has been created.

Paolo Falcaro: “This has many conceivable applications and we’re going to try many of them with a variety of different functionalities. One and the same material can show different properties through different orientations and alignments. Intentional growth of MOFs on this scale opens up a whole range of promising applications which we’re going to explore step by step.”

Protecting enzymes

A major aim of Paolo Falcaro and his team at TU Graz is the development of MOFs for biotechnological applications: “We are trying to encapsulate enzymes, proteins and even DNA in MOFs and to immunise their activity against fluctuations in temperature. The crystalline structure surrounding the “guest” in the pore has a protective effect, like a tough jacket. We want to check out the possibilities more accurately,” explains Falcaro.

Paolo Falcaro: luminous fingerprints

Born in Padua, Italy, Paolo Falcaro has spent a long time working with the synthesis, fabrication and orientation of porous and crystalline materials, and he publishes his discoveries in prestigious journals. Two years ago, he and colleagues from Australia managed to get invisible fingerprints to glow in UV light by using a drop of liquid with MOF crystals. This new forensic method appears to be fast and broadly applicable providing an alternative method to the previous way for fingerprint detection.

After studies at the Universities of Padua and Bologna and extensive professional experience in Italian commerce, Falcaro moved to the Commonwealth Scientific and Industrial Research Organisation (CSIRO) in Australia in 2009. Also, he was visiting professor at the Osaka Prefecture University, Kyoto University in Japan, and currently he is adjunct full professor at the University of Adelaide in Australia. Paolo Falcaro has been Professor of Bio-based Materials Technology at TU Graz’s Faculty of Technical Chemistry, Chemical and Process Engineering,Biotechnology since 1st April, 2016.

Original publication:
Nature Materials | doi 10.1038/nmat4815,
“Centimetre-scale micropore alignment in oriented polycrystalline metal-organic framework films via heteroepitaxial growth”
http://www.nature.com/nmat/journal/vaop/ncurrent/full/nmat4815.html

This research area is anchored in the Field of Expertise “Advanced Materials Science”, one of five research FoE of TU Graz.

Contact:
Paolo FALCARO
Univ.-Prof. Dott. mag. Dr.
TU Graz | Institute of Physical and Theoretical Chemistry
Phone +43 316 873 32203
Mobile: +43 664 8878 3170
E-Mail: paolo.falcaro@tugraz.at

Mag. Susanne Eigner | Technische Universität Graz
Further information:
http://www.tugraz.at

More articles from Materials Sciences:

nachricht Borophene shines alone as 2-D plasmonic material
21.11.2017 | Rice University

nachricht Quantum dots amplify light with electrical pumping
21.11.2017 | DOE/Los Alamos National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>