Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Polymer Materials Make Solar Thermal Systems More Sustainable

25.02.2015

Researchers Prove Environmental and Economic Potential

Within the ExKoll project, the Durability Analysis Group at Fraunhofer ISE investigated the economic feasibility of polymer collectors and performed life-cycle analyses. The experts found that in comparison to standard flat collectors, mass-produced polymer collectors perform better economically and ecologically.


Plastic collector manufactured by extrusion (1), extruded absorber for flexible absorber widths (2), end caps for polymer collectors (3).

©Fraunhofer ISE


A comparison of the environmental footprints: The values for extruded polymer collectors are less than those for standard flat plate collectors with an aluminium-copper absorber.

©Fraunhofer ISE

For the environmentally friendly production of collectors, the scientists considered both high-performance plastics and simple, standard plastics and assessed their suitability in solar thermal systems. Comprehensive investigations on how to increase durability and reliability as well as economic feasibility studies formed the basis of the life cycle analyses. The energy and raw material flows of the promising collector concepts were compared with those of a conventional flat plate collector with an aluminum-copper absorber.

“The results of the comparison clearly show that the polymer collectors have a lower environmental impact than comparable standard flat plate collectors,” stated Michael Köhl, project leader at Fraunhofer ISE. “We determined differences of up to 65 percent.”

Also when considering the categories which have the largest effects on the environmental footprint, that is human toxicity, fine particle pollution, fossil fuels, climate change, exploration and extraction of metals, we found that the impact of the conventional flat collectors is greater in all five categories. Plastic collectors not only show a large environmental potential.

An economic feasibility study revealed that alone in the production, plastic collectors can achieve cost savings of up to 50 percent compared to standard collectors. This result is particularly interesting for companies that already manufacture plastics and who want to widen their range to include collectors.

Future research is to focus on optimizing the supply and distribution chain of polymer collectors. The goal of the research is to decrease costs further and to promote plastics as an alternative material in solar thermal technology. A new Task of the Solar Heating and Cooling Program of the International Energy Agency (IEA SHCP), whose topic is cost reduction, offers an ideal platform for pursuing this goal. The Task is led by Fraunhofer ISE and shall start its work in summer 2015 to develop further strategies for reducing the costs of solar thermal applications.

About the ExKoll project

In the ExKoll project, which was sponsored by the Federal Ministry for Economic Affairs and Energy from 9/2012 through 12/2014, the use of extrusion for manufacturing polymers was investigated. A market analysis was conducted to determine potential markets for extruded plastic collectors. In addition, accelerated aging tests were carried out to adapt and optimize the polymer materials. These are performed under deliberately heightened levels of UV radiation, temperature and humidity.

Weitere Informationen:

http://www.ise.fraunhofer.de/en - Website Fraunhofer ISE
http://www.ise.fraunhofer.de/en/business-areas/solar-thermal-technology/research... - Website Project ExKoll

Karin Schneider | Fraunhofer-Institut für Solare Energiesysteme ISE

More articles from Materials Sciences:

nachricht New biomaterial could replace plastic laminates, greatly reduce pollution
21.09.2017 | Penn State

nachricht Stopping problem ice -- by cracking it
21.09.2017 | Norwegian University of Science and Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>