Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Polymer Materials Make Solar Thermal Systems More Sustainable

25.02.2015

Researchers Prove Environmental and Economic Potential

Within the ExKoll project, the Durability Analysis Group at Fraunhofer ISE investigated the economic feasibility of polymer collectors and performed life-cycle analyses. The experts found that in comparison to standard flat collectors, mass-produced polymer collectors perform better economically and ecologically.


Plastic collector manufactured by extrusion (1), extruded absorber for flexible absorber widths (2), end caps for polymer collectors (3).

©Fraunhofer ISE


A comparison of the environmental footprints: The values for extruded polymer collectors are less than those for standard flat plate collectors with an aluminium-copper absorber.

©Fraunhofer ISE

For the environmentally friendly production of collectors, the scientists considered both high-performance plastics and simple, standard plastics and assessed their suitability in solar thermal systems. Comprehensive investigations on how to increase durability and reliability as well as economic feasibility studies formed the basis of the life cycle analyses. The energy and raw material flows of the promising collector concepts were compared with those of a conventional flat plate collector with an aluminum-copper absorber.

“The results of the comparison clearly show that the polymer collectors have a lower environmental impact than comparable standard flat plate collectors,” stated Michael Köhl, project leader at Fraunhofer ISE. “We determined differences of up to 65 percent.”

Also when considering the categories which have the largest effects on the environmental footprint, that is human toxicity, fine particle pollution, fossil fuels, climate change, exploration and extraction of metals, we found that the impact of the conventional flat collectors is greater in all five categories. Plastic collectors not only show a large environmental potential.

An economic feasibility study revealed that alone in the production, plastic collectors can achieve cost savings of up to 50 percent compared to standard collectors. This result is particularly interesting for companies that already manufacture plastics and who want to widen their range to include collectors.

Future research is to focus on optimizing the supply and distribution chain of polymer collectors. The goal of the research is to decrease costs further and to promote plastics as an alternative material in solar thermal technology. A new Task of the Solar Heating and Cooling Program of the International Energy Agency (IEA SHCP), whose topic is cost reduction, offers an ideal platform for pursuing this goal. The Task is led by Fraunhofer ISE and shall start its work in summer 2015 to develop further strategies for reducing the costs of solar thermal applications.

About the ExKoll project

In the ExKoll project, which was sponsored by the Federal Ministry for Economic Affairs and Energy from 9/2012 through 12/2014, the use of extrusion for manufacturing polymers was investigated. A market analysis was conducted to determine potential markets for extruded plastic collectors. In addition, accelerated aging tests were carried out to adapt and optimize the polymer materials. These are performed under deliberately heightened levels of UV radiation, temperature and humidity.

Weitere Informationen:

http://www.ise.fraunhofer.de/en - Website Fraunhofer ISE
http://www.ise.fraunhofer.de/en/business-areas/solar-thermal-technology/research... - Website Project ExKoll

Karin Schneider | Fraunhofer-Institut für Solare Energiesysteme ISE

More articles from Materials Sciences:

nachricht Glass's off-kilter harmonies
18.01.2017 | University of Texas at Austin, Texas Advanced Computing Center

nachricht Explaining how 2-D materials break at the atomic level
18.01.2017 | Institute for Basic Science

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>