Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Polymer Materials Make Solar Thermal Systems More Sustainable

25.02.2015

Researchers Prove Environmental and Economic Potential

Within the ExKoll project, the Durability Analysis Group at Fraunhofer ISE investigated the economic feasibility of polymer collectors and performed life-cycle analyses. The experts found that in comparison to standard flat collectors, mass-produced polymer collectors perform better economically and ecologically.


Plastic collector manufactured by extrusion (1), extruded absorber for flexible absorber widths (2), end caps for polymer collectors (3).

©Fraunhofer ISE


A comparison of the environmental footprints: The values for extruded polymer collectors are less than those for standard flat plate collectors with an aluminium-copper absorber.

©Fraunhofer ISE

For the environmentally friendly production of collectors, the scientists considered both high-performance plastics and simple, standard plastics and assessed their suitability in solar thermal systems. Comprehensive investigations on how to increase durability and reliability as well as economic feasibility studies formed the basis of the life cycle analyses. The energy and raw material flows of the promising collector concepts were compared with those of a conventional flat plate collector with an aluminum-copper absorber.

“The results of the comparison clearly show that the polymer collectors have a lower environmental impact than comparable standard flat plate collectors,” stated Michael Köhl, project leader at Fraunhofer ISE. “We determined differences of up to 65 percent.”

Also when considering the categories which have the largest effects on the environmental footprint, that is human toxicity, fine particle pollution, fossil fuels, climate change, exploration and extraction of metals, we found that the impact of the conventional flat collectors is greater in all five categories. Plastic collectors not only show a large environmental potential.

An economic feasibility study revealed that alone in the production, plastic collectors can achieve cost savings of up to 50 percent compared to standard collectors. This result is particularly interesting for companies that already manufacture plastics and who want to widen their range to include collectors.

Future research is to focus on optimizing the supply and distribution chain of polymer collectors. The goal of the research is to decrease costs further and to promote plastics as an alternative material in solar thermal technology. A new Task of the Solar Heating and Cooling Program of the International Energy Agency (IEA SHCP), whose topic is cost reduction, offers an ideal platform for pursuing this goal. The Task is led by Fraunhofer ISE and shall start its work in summer 2015 to develop further strategies for reducing the costs of solar thermal applications.

About the ExKoll project

In the ExKoll project, which was sponsored by the Federal Ministry for Economic Affairs and Energy from 9/2012 through 12/2014, the use of extrusion for manufacturing polymers was investigated. A market analysis was conducted to determine potential markets for extruded plastic collectors. In addition, accelerated aging tests were carried out to adapt and optimize the polymer materials. These are performed under deliberately heightened levels of UV radiation, temperature and humidity.

Weitere Informationen:

http://www.ise.fraunhofer.de/en - Website Fraunhofer ISE
http://www.ise.fraunhofer.de/en/business-areas/solar-thermal-technology/research... - Website Project ExKoll

Karin Schneider | Fraunhofer-Institut für Solare Energiesysteme ISE

More articles from Materials Sciences:

nachricht Physics, photosynthesis and solar cells
01.12.2016 | University of California - Riverside

nachricht New process produces hydrogen at much lower temperature
01.12.2016 | Waseda University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>