Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists get a perfect material for air filters

02.03.2016

Physicists have created a perfect material for filters and respirators

A research team from the Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences have synthesized the material that is perfect for protection of respiratory organs, analytical research and other practical purposes.


A sample of the new fabric in reflected light.

Credit: The picture is courtesy of the researchers

An almost weightless fabric made of nylon nanofibers with a diameter less than 15 nm beats any other similar materials in terms of filtering and optical properties.

The scientists whose work is published in Macromolecular Nanotechnology Journal, characterize their material as lightweight (10-20 mg/m2), almost invisible (95% light transmission: more than that of a window glass), showing low resistance to airflow and efficient interception of <1 micrometer fine particulate matter.

The wording "nanofibers" in the researchers' article is more than a fashion statement. Previously, the same team demonstrated that reducing fiber diameter from 200 nanometers down to 20 decreased filter resistance to airflow by two thirds, and this effect could no longer be explained by classical aerodynamics.

When an obstacle size is smaller than the free path of gas molecules, the standard methods estimating aerodynamic resistance based on the continuum theory no longer work. In normal conditions, the mean free path of air molecules makes 65 nanometers.

The mean free path is the average distance one molecule manages to cover before colliding with another. Only if all obstacles are much bigger than this value, the free stream coming at them can be rightfully considered a continuous medium.

The scientists used the technique called electrospinning: a jet of a dissolved polymer is ejected through a special nozzle aiming at a target under action of an electric field. From the other side, ethanol is electrosprayed. The polymer jet and the alcohol ions take the opposite electric charges. Colliding in the air, they form ultra-thin fibrous films.

Electrospinning technology as a way to produce nonwoven fibrous filters has been developed back in the 50s to purify air in atomic industry. However, the researchers introduced an important improvement: instead of obtaining nanomats on a solid conducting substrate like before, now with the new technology, a free filter is formed covering a 55-mm hole in a non-conductive polycarbonate screen.

The published work completed the cycle of the authors' papers devoted to development of the manufacturing technology and studies of properties of nanofilters manufactured using this new process. It was established that the unique optical and filtering properties originate from a special mechanism of "healing" holes and defects in free standing filters. Such holes literally attract fibers landing onto the filter surface.

As a result, a good filter without big holes can be obtained from a minimum amount of nanofibers and, accordingly, with a minimum resistance to airflow. Moreover, active healing of big holes between threads provides the filters with the properties inherent in filters with calibrated pores, so called track-etched membranes (Nuclepores). The scientists have also demonstrated that the "healing" mechanism does not work in the conventional electrospinning technique where nanofibers are deposited onto a conducting substrate completely at random.

The testing of nylon-4,6 electrospun films showed that thess almost weightless and invisible fabrics trap no less than 98% of airborne dust particles. For testing, the scientists used particles from 0.2 to 0.3 micron in diameter. This roughly corresponds to the dust that is not caught by the nasal pharynx, and penetrates the lungs causing a number of dangerous medical conditions. Submicron particles (< 1 micrometer in diameter) are the ones also used to test industrial and medical filters. To assess performance, resistance to airflow is tested as well.

Experiments to measure resistance have been made on singular samples so far. In real filters a multi-layer surface with a complex configuration is normally used. The experiments showed that the nylon-4,6 filtering material had the best properties out of all types of fabric previously described . In terms of interception extent to filter weight ratio and interception-resistance to airflow ratio, the new filtering material beats any existing equivalents by several times.

At first it looks like a ring sitting on a sheet of paper. In reality, it is a sample of the new fabric for filters. The small red spot on top of "l" letter is a spot wherea laser beam penetrates the film. Low intensity of dispersed light demonstrates high transparency of the new material. A transmission index of the new product is higher than that of a good window glass. The picture is courtesy of the researchers.

Speaking about possible applications of this material, the scientists claim it is more than the obvious air and water purification from particulate matter. Since the material surpasses glass in transparency, it can be used in biological research. For example, after pumping air or water through the new filter intercepted microorganisms may be directly observed right on the transparent filter under a microscope. Again, this effect is due to ultra-fine threads. Their thickness is significantly less than even visible light wavelength.

Media Contact

Valerii Roizen
press@mipt.ru
7-929-992-2721

 @phystech

http://mipt.ru/en/ 

Valerii Roizen | EurekAlert!

Further reports about: airflow diameter glass healing material nanofibers nanometers physics weightless window glass

More articles from Materials Sciences:

nachricht Metallic nanoparticles will help to determine the percentage of volatile compounds
20.10.2017 | Lomonosov Moscow State University

nachricht New material for digital memories of the future
19.10.2017 | Linköping University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

Metallic nanoparticles will help to determine the percentage of volatile compounds

20.10.2017 | Materials Sciences

Shallow soils promote savannas in South America

20.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>