Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists get a perfect material for air filters

02.03.2016

Physicists have created a perfect material for filters and respirators

A research team from the Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences have synthesized the material that is perfect for protection of respiratory organs, analytical research and other practical purposes.


A sample of the new fabric in reflected light.

Credit: The picture is courtesy of the researchers

An almost weightless fabric made of nylon nanofibers with a diameter less than 15 nm beats any other similar materials in terms of filtering and optical properties.

The scientists whose work is published in Macromolecular Nanotechnology Journal, characterize their material as lightweight (10-20 mg/m2), almost invisible (95% light transmission: more than that of a window glass), showing low resistance to airflow and efficient interception of <1 micrometer fine particulate matter.

The wording "nanofibers" in the researchers' article is more than a fashion statement. Previously, the same team demonstrated that reducing fiber diameter from 200 nanometers down to 20 decreased filter resistance to airflow by two thirds, and this effect could no longer be explained by classical aerodynamics.

When an obstacle size is smaller than the free path of gas molecules, the standard methods estimating aerodynamic resistance based on the continuum theory no longer work. In normal conditions, the mean free path of air molecules makes 65 nanometers.

The mean free path is the average distance one molecule manages to cover before colliding with another. Only if all obstacles are much bigger than this value, the free stream coming at them can be rightfully considered a continuous medium.

The scientists used the technique called electrospinning: a jet of a dissolved polymer is ejected through a special nozzle aiming at a target under action of an electric field. From the other side, ethanol is electrosprayed. The polymer jet and the alcohol ions take the opposite electric charges. Colliding in the air, they form ultra-thin fibrous films.

Electrospinning technology as a way to produce nonwoven fibrous filters has been developed back in the 50s to purify air in atomic industry. However, the researchers introduced an important improvement: instead of obtaining nanomats on a solid conducting substrate like before, now with the new technology, a free filter is formed covering a 55-mm hole in a non-conductive polycarbonate screen.

The published work completed the cycle of the authors' papers devoted to development of the manufacturing technology and studies of properties of nanofilters manufactured using this new process. It was established that the unique optical and filtering properties originate from a special mechanism of "healing" holes and defects in free standing filters. Such holes literally attract fibers landing onto the filter surface.

As a result, a good filter without big holes can be obtained from a minimum amount of nanofibers and, accordingly, with a minimum resistance to airflow. Moreover, active healing of big holes between threads provides the filters with the properties inherent in filters with calibrated pores, so called track-etched membranes (Nuclepores). The scientists have also demonstrated that the "healing" mechanism does not work in the conventional electrospinning technique where nanofibers are deposited onto a conducting substrate completely at random.

The testing of nylon-4,6 electrospun films showed that thess almost weightless and invisible fabrics trap no less than 98% of airborne dust particles. For testing, the scientists used particles from 0.2 to 0.3 micron in diameter. This roughly corresponds to the dust that is not caught by the nasal pharynx, and penetrates the lungs causing a number of dangerous medical conditions. Submicron particles (< 1 micrometer in diameter) are the ones also used to test industrial and medical filters. To assess performance, resistance to airflow is tested as well.

Experiments to measure resistance have been made on singular samples so far. In real filters a multi-layer surface with a complex configuration is normally used. The experiments showed that the nylon-4,6 filtering material had the best properties out of all types of fabric previously described . In terms of interception extent to filter weight ratio and interception-resistance to airflow ratio, the new filtering material beats any existing equivalents by several times.

At first it looks like a ring sitting on a sheet of paper. In reality, it is a sample of the new fabric for filters. The small red spot on top of "l" letter is a spot wherea laser beam penetrates the film. Low intensity of dispersed light demonstrates high transparency of the new material. A transmission index of the new product is higher than that of a good window glass. The picture is courtesy of the researchers.

Speaking about possible applications of this material, the scientists claim it is more than the obvious air and water purification from particulate matter. Since the material surpasses glass in transparency, it can be used in biological research. For example, after pumping air or water through the new filter intercepted microorganisms may be directly observed right on the transparent filter under a microscope. Again, this effect is due to ultra-fine threads. Their thickness is significantly less than even visible light wavelength.

Media Contact

Valerii Roizen
press@mipt.ru
7-929-992-2721

 @phystech

http://mipt.ru/en/ 

Valerii Roizen | EurekAlert!

Further reports about: airflow diameter glass healing material nanofibers nanometers physics weightless window glass

More articles from Materials Sciences:

nachricht Physics, photosynthesis and solar cells
01.12.2016 | University of California - Riverside

nachricht New process produces hydrogen at much lower temperature
01.12.2016 | Waseda University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>