Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physical study may give boost to hydrogen cars

01.07.2015

New study of hydrogen storage material magnesium hydride reveals path to better performance, possibly paving way toward better future fuel tanks

The dream of a cleaner, greener transportation future burns brightly in the promise of hydrogen-fueled, internal combustion engine automobiles. Modern-day versions of such vehicles run hot, finish clean and produce only pure water as a combustion byproduct.


Smaller Mg nanoparticles display better mechanical performance that is good for structural stability during cycling and also hydrogen storage kinetics.

Credit: Qian Yu/Zhejiang University

But whether those vehicles ever cross over from the niche marketplace to become the mainstay of every garage may depend on how well we can address lingering technical and infrastructure hurdles that stand in the way of their widespread use. One of these is the fuel tank -- how do you engineer them so that they can be more like gasoline tanks, which are relatively safe, easy to fill, carry you hundreds of miles and can be refueled again and again with no loss of performance?

This week in the journal Applied Physics Letters, from AIP Publishing, a team of researchers in the United States and China has taken a step toward that solution. They describe the physics of magnesium hydride, one type of material that potentially could be used to store hydrogen fuel in future automobiles and other applications. Using a technique known as in situ transmission electron microscopy, the team tested different sized nanoparticles of magnesium hydride to gauge their mechanical properties and discovered lessons on how one might engineer the nanoparticles to make them better.

"Smaller particles have better mechanical properties, including better plastic stability," said Qian Yu, the lead author on the paper. "Our work explained why."

Yu is affiliated with Zhejiang University in Hangzhou, China; the University of California, Berkeley and Lawrence Berkeley National Laboratory.

Other collaborators on the work are affiliated with the University of Michigan in Ann Arbor; General Motors Research and Development Center in Warren, Michigan; and Shanghai Jiaotong University in Shanghai, China.

The Problem of Storing Hydrogen with Magnesium

Hydrogen storage for automobile engines is still something of an application in search of its technology. We know that the next generation of hydrogen fuel tanks will need to offer greater storage capacities and better gas exchange kinetics than existing models, but we don't know exactly what it will take to deliver that.

One possibility is to use a material like magnesium hydride, long seen as a promising medium for storage. Magnesium readily binds hydrogen, and so the idea is that you could take a tank filled with magnesium, pump in hydrogen and then pump it out as needed to run the engine.

But this approach is hampered by slow kinetics of adsorption and desorption -- the speed with which molecular hydrogen binds to and is released from the magnesium. This is ultimately tied to the how the material binds to hydrogen at the molecular level, and so in recent years researchers have sought to better engineer magnesium to achieve better kinetics.

Previous work had already shown that smaller magnesium nanoparticles have better hydrogen storage properties, but nobody understood why. Some thought it was primarily the greater overall magnesium surface area within the tank realized by milling smaller particles. But Yu and colleagues showed that it is also highly related to how the particles respond to deformation during cycles of fueling and emptying the tank.

Fuel cycles in a hydrogen tank introduce tremendous internal changes in pressure, which can deform the particles, cracking or degrading them. Smaller particles have greater plastic stability, meaning that they are more able to retain their structure even when undergoing deformation. This means that the smaller, more plastic magnesium nanoparticles can retain their structure longer and continue to hold hydrogen cycle after cycle.

But it turns out that in addition to greater plastic stability, the smaller particles also have less "deformation anisotropy" -- a measure of how the magnesium nanoparticles all tend to respond, uniformly or not, across the entire tank. Deformation anisotropy is strongly reduced at nanoscales, Yu said, and because of this, smaller magnesium nanoparticles have more homogeneous dislocation activity inside, which offer more homogenously distributed diffusion path for hydrogen.

This suggests a path forward for making better hydrogen storage tanks, Yu said, by engineering them specifically to take advantage of greater homogeneous dislocation. Next they plan to do similar studies on hydrogen storage materials as they undergo fuel cycling, absorbing and desorbing hydrogen in the process.

###

The article, "Size-dependent mechanical properties of Mg nanoparticles used for hydrogen storage," is authored by Qian Yu, Liang Qi, Raja K. Mishra, Xiaoqin Zeng and Andrew M. Minor. It will be published in the journal Applied Physics Letters on June 30, 2015 (DOI: 10.1063/1.4921003). After that date, it can be accessed at: http://scitation.aip.org/content/aip/journal/apl/106/26/10.1063/1.4921003

ABOUT THE JOURNAL

Applied Physics Letters features concise, rapid reports on significant new findings in applied physics. The journal covers new experimental and theoretical research on applications of physics phenomena related to all branches of science, engineering, and modern technology. See: http://apl.aip.org

Media Contact

Jason Socrates Bardi
jbardi@aip.org
240-535-4954

 @jasonbardi

http://www.aip.org 

Jason Socrates Bardi | EurekAlert!

More articles from Materials Sciences:

nachricht Mat4Rail: EU Research Project on the Railway of the Future
23.02.2018 | Universität Bremen

nachricht Atomic structure of ultrasound material not what anyone expected
21.02.2018 | North Carolina State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>