Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Perovskites can improve fabrication of ceramic electronics

16.03.2015

Scientists in Japan are finding that perovskites have the potential to improve the fabrication of electrodes and wiring in ceramic-based electronics such as spark plugs.

Many ceramic-based electronics, such as spark plugs and multilayer ceramic capacitors (found in consumer electronics, mobile phones, DVDs and video cameras, for example), are composed of a combination of oxides and metals.


Crystal structure of LaCo0.5Ni0.5O3 based on a rhombhedral lattice.

Copyright : STAM

The oxides are used as a base to provide the product’s electric, optical or magnetic properties, while the metals are used in electrodes, which propagate the electrical signals. Fabricating these products is difficult because the physical properties of the oxides and metals are very different.

To achieve a high quality product, the manufacturing process needs to account for differences in synthesis temperatures and atmospheres, and for differences in expansion and shrinkage. A fabrication process that is optimized for the conducting metal electrodes can suppress the performance of the base oxides.

In a review paper published in the journal Science and Technology of Advanced Materials, a group of scientists in Japan investigated the potential of replacing metal electrodes in ceramic-based electronics with conductive oxides. Doing so could allow for more innovations in the ceramics industry.

Oxide electrodes in these ceramic-based products would need to be highly conductive (above 1000 Siemens/cm) and stable in air at temperatures ranging between room temperature and 1173 Kelvin (almost 900° Celsius).

The team of researchers, from NGK Spark Plug Company and Nagoya University, fabricated oxides that have the potential to replace metal electrodes and investigated their physical properties above room temperature. Lanthanum-based perovskite-type oxides were chosen as having a potential for industrial use because they do not contain expensive rare metals, they are not environmentally hazardous, and they are stable in air up to 1173 Kelvin.

Based on their investigations, the team found that the lanthanum-based perovskite-type oxide LaCo0.5Ni 0.5O3 showed high electronic conduction at high temperatures in air and was suitable for the fabrication of oxide electrodes and wiring in ceramic-based products.

For further information contact:
Dr. Hisashi Kozuka
NGK Spark Plug Co., Ltd.
2808, Iwasaki, Komaki-shi
Aichi 485-8510, Japan
Tel: +81-568-76-1362
Email: h-kozuka@mg.ngkntk.co.jp


Journal Information
Science and Technology of Advanced Materials (STAM) is the leading open access, international journal for outstanding research articles across all aspects of materials science. Our audience is the international materials community across the disciplines of materials science, physics, chemistry, biology as well as engineering.

The journal covers a broad spectrum of materials science research including functional materials, synthesis and processing, theoretical analyses, characterization and properties of materials. Emphasis is placed on the interdisciplinary nature of materials science and issues at the forefront of the field, such as energy and environmental issues, as well as medical and bioengineering applications
http://iopscience.iop.org/1468-6996

For more information about the journal Science and Technology of Advanced Materials, please contact

Mikiko Tanifuji
Publishing Director
Science and Technology of Advanced Materials
Email: TANIFUJI.Mikiko@nims.go.jp


Associated links
Read the paper here

Journal information

Sci. Technol. Adv. Mater. Vol. 16 (2015) 026001
doi:10.1088/1468-6996/16/2/026001
Electronic conduction in La-based perovskite-type oxides
Hisashi Kozuka, Kazushige Ohbayashi, and Kunihito Koumoto

Mikiko Tanifuji | ResearchSEA
Further information:
http://www.nims.go.jp/eng/
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Scientist invents way to trigger artificial photosynthesis to clean air
26.04.2017 | University of Central Florida

nachricht Researchers invent process to make sustainable rubber, plastics
25.04.2017 | University of Delaware

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>