Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Perovskites can improve fabrication of ceramic electronics

16.03.2015

Scientists in Japan are finding that perovskites have the potential to improve the fabrication of electrodes and wiring in ceramic-based electronics such as spark plugs.

Many ceramic-based electronics, such as spark plugs and multilayer ceramic capacitors (found in consumer electronics, mobile phones, DVDs and video cameras, for example), are composed of a combination of oxides and metals.


Crystal structure of LaCo0.5Ni0.5O3 based on a rhombhedral lattice.

Copyright : STAM

The oxides are used as a base to provide the product’s electric, optical or magnetic properties, while the metals are used in electrodes, which propagate the electrical signals. Fabricating these products is difficult because the physical properties of the oxides and metals are very different.

To achieve a high quality product, the manufacturing process needs to account for differences in synthesis temperatures and atmospheres, and for differences in expansion and shrinkage. A fabrication process that is optimized for the conducting metal electrodes can suppress the performance of the base oxides.

In a review paper published in the journal Science and Technology of Advanced Materials, a group of scientists in Japan investigated the potential of replacing metal electrodes in ceramic-based electronics with conductive oxides. Doing so could allow for more innovations in the ceramics industry.

Oxide electrodes in these ceramic-based products would need to be highly conductive (above 1000 Siemens/cm) and stable in air at temperatures ranging between room temperature and 1173 Kelvin (almost 900° Celsius).

The team of researchers, from NGK Spark Plug Company and Nagoya University, fabricated oxides that have the potential to replace metal electrodes and investigated their physical properties above room temperature. Lanthanum-based perovskite-type oxides were chosen as having a potential for industrial use because they do not contain expensive rare metals, they are not environmentally hazardous, and they are stable in air up to 1173 Kelvin.

Based on their investigations, the team found that the lanthanum-based perovskite-type oxide LaCo0.5Ni 0.5O3 showed high electronic conduction at high temperatures in air and was suitable for the fabrication of oxide electrodes and wiring in ceramic-based products.

For further information contact:
Dr. Hisashi Kozuka
NGK Spark Plug Co., Ltd.
2808, Iwasaki, Komaki-shi
Aichi 485-8510, Japan
Tel: +81-568-76-1362
Email: h-kozuka@mg.ngkntk.co.jp


Journal Information
Science and Technology of Advanced Materials (STAM) is the leading open access, international journal for outstanding research articles across all aspects of materials science. Our audience is the international materials community across the disciplines of materials science, physics, chemistry, biology as well as engineering.

The journal covers a broad spectrum of materials science research including functional materials, synthesis and processing, theoretical analyses, characterization and properties of materials. Emphasis is placed on the interdisciplinary nature of materials science and issues at the forefront of the field, such as energy and environmental issues, as well as medical and bioengineering applications
http://iopscience.iop.org/1468-6996

For more information about the journal Science and Technology of Advanced Materials, please contact

Mikiko Tanifuji
Publishing Director
Science and Technology of Advanced Materials
Email: TANIFUJI.Mikiko@nims.go.jp


Associated links
Read the paper here

Journal information

Sci. Technol. Adv. Mater. Vol. 16 (2015) 026001
doi:10.1088/1468-6996/16/2/026001
Electronic conduction in La-based perovskite-type oxides
Hisashi Kozuka, Kazushige Ohbayashi, and Kunihito Koumoto

Mikiko Tanifuji | ResearchSEA
Further information:
http://www.nims.go.jp/eng/
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Decoding cement's shape promises greener concrete
08.12.2016 | Rice University

nachricht Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D
08.12.2016 | DOE/Brookhaven National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>