Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ORNL superhydrophobic glass coating offers clear benefits

12.05.2015

A moth's eye and lotus leaf were the inspirations for an antireflective water-repelling, or superhydrophobic, glass coating that holds significant potential for solar panels, lenses, detectors, windows, weapons systems and many other products.

The discovery by researchers at the Department of Energy's Oak Ridge National Laboratory, detailed in a paper published in the Journal of Materials Chemistry C, is based on a mechanically robust nanostructured layer of porous glass film. The coating can be customized to be superhydrophobic, fog-resistant and antireflective.


This is a schematic representation of the coated product and applications.

Credit: ORNL

"While lotus leaves repel water and self-clean when it rains, a moth's eyes are antireflective because of naturally covered tapered nanostructures where the refractive index gradually increases as light travels to the moth's cornea," said Tolga Aytug, lead author of the paper and a member of ORNL's Materials Chemistry Group. "Combined, these features provide truly game-changing ability to design coatings for specific properties and performance."

To be superhydrophobic, a surface must achieve a water droplet contact angle exceeding 150 degrees. ORNL's coating has a contact angle of between 155 and 165 degrees, so water literally bounces off, carrying away dust and dirt. This property combined with the suppression of light reflection from a glass surface is critical for improved performance in numerous optical applications, Aytug said.

The base material--a special type of glass coating--is also highly durable, which sets it apart from competing technologies, according to Aytug, who described the process.

"We developed a method that starts with depositing a thin layer of glass material on a glass surface followed by thermal processing and selective material removal by etching," he said. "This produces a surface consisting of a porous three-dimensional network of high-silica content glass that resembles microscopic coral."

The fact the coating can be fabricated through industry standard techniques makes it easy and inexpensive to scale up and apply to a wide variety of glass platforms.

"The unique three-dimensionality interconnected nanoporous nature of our coatings significantly suppresses Fresnel light reflections from glass surfaces, providing enhanced transmission over a wide range of wavelengths and angles," Aytug said. The Fresnel effect describes the amount of light that is reflected versus the amount transmitted.

Where solar panels are concerned, the suppression of reflected light translates into a 3-6 percent relative increase in light-to-electricity conversion efficiency and power output of the cells. Coupled with the superhydrophobic self-cleaning ability, this could also substantially reduce maintenance and operating costs of solar panels. In addition, the coating is highly effective at blocking ultraviolet light.

Other potential applications include goggles, periscopes, optical instruments, photodetectors and sensors. In addition, the superhydrophobic property can be effective at preventing ice and snow buildup on optical elements and can impede biofouling in marine applications.

Aytug emphasized that the impact abrasion resistance of the coating completes the package, making it suitable for untold applications.

"This quality differentiates it from traditional polymeric and powder-based counterparts, which are generally mechanically fragile," Aytug said. "We have shown that our nanostructure glass coatings exhibit superior mechanical resistance to impact abrasion - like sand storms - and are thermally stable to temperatures approaching 500 degrees Celsius."

###

Other ORNL authors of the paper, titled "Monolithic Graded-Refractive-Index Glass-based Antireflective Coatings: Broadband/Omnidirectional Light Harvesting and Self-Cleaning Characteristics," were Andrew Lupini, Gerald Jellison, Pooran Joshi, Ilia Ivanov, Tao Liu, Peng Wang, Rajesh Menon, Rosa Trejo, Edgar Lara-Curzio, Scott Hunter, John Simpson, Parans Paranthaman and David Christen.

The work was supported by the Laboratory Directed Technology Innovation Program. STEM research was supported by the DOE Office of Science Basic Energy Sciences. A portion of the research was conducted at the Center for Nanophase Materials Sciences, a DOE Office of Science User Facility. Photovoltaic device measurements were done at the University of Utah.

UT-Battelle manages ORNL for the DOE's Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit http://science.energy.gov/.

Image: http://www.ornl.gov/Image%20Library/Main%20Nav/ORNL/News/News%20Releases/2015/antireflective-Cover-picture_hr.jpg?code=49d85360-a915-4dd0-86e6-a9999d971654

Cutline: Schematic representation of the coated product and applications.

NOTE TO EDITORS: You may read other press releases from Oak Ridge National Laboratory or learn more about the lab at http://www.ornl.gov/news. Additional information about ORNL is available at the sites below:

Twitter - http://twitter.com/ornl
RSS Feeds - http://www.ornl.gov/ornlhome/rss_feeds.shtml
Flickr - http://www.flickr.com/photos/oakridgelab
YouTube - http://www.youtube.com/user/OakRidgeNationalLab
LinkedIn - http://www.linkedin.com/companies/oak-ridge-national-laboratory
Facebook - http://www.facebook.com/Oak.Ridge.National.Laboratory

Media Contact

Ron Walli
wallira@ornl.gov
865-576-0226

 @ORNL

http://www.ornl.gov 

Ron Walli | EurekAlert!

More articles from Materials Sciences:

nachricht Decoding cement's shape promises greener concrete
08.12.2016 | Rice University

nachricht Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D
08.12.2016 | DOE/Brookhaven National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>