Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ORNL materials researchers get first look at atom-thin boundaries

11.11.2014

Scientists at the Department of Energy’s Oak Ridge National Laboratory have made the first direct observations of a one-dimensional boundary separating two different, atom-thin materials, enabling studies of long-theorized phenomena at these interfaces.

Theorists have predicted the existence of intriguing properties at one-dimensional (1-D) boundaries between two crystalline components, but experimental verification has eluded researchers because atomically precise 1-D interfaces are difficult to construct.


Scientists at the Oak Ridge National Laboratory have made the first direct observations of the electronic behaviors of a one-dimensional boundary separating atom-thin graphene and hexagonal boron nitride materials.

“While many theoretical studies of such 1-D interfaces predict striking behaviors, in our work we have provided the first experimental validation of those interface properties,” said ORNL’s An-Ping Li.

The new Nature Communications study builds on work by ORNL and University of Tennessee scientists published in Science earlier this year that introduced a method to grow different two-dimensional materials – graphene and boron nitride – into a single layer only one atom thick.

The team’s materials growth technique unlocked the ability to study the 1-D boundary and its electronic properties in atomic resolution. Using scanning tunneling microscopy, spectroscopy and density-functional calculations, the researchers first obtained a comprehensive picture of spatial and energetic distributions of the 1-D interface states.

“In three-dimensional (3-D) systems, the interface is embedded so you cannot get a real-space view of the complete interface – you can only look at a projection of that plane,” said Jewook Park, ORNL postdoctoral researcher and the lead author of the work. “In our case, the 1-D interface is completely accessible to real-space study,”

“The combination of scanning tunneling microscopy and the first principles theory calculations allows us to distinguish the chemical nature of the boundary and evaluate the effects of orbital hybridization at the junction,” said ORNL’s Mina Yoon, a theorist on the team.

The researchers’ observations revealed a highly confined electric field at the interface and provided an opportunity to investigate an intriguing phenomenon known as a “polar catastrophe,” which occurs in 3-D oxide interfaces. This effect can cause atomic and electron reorganization at the interface to compensate for the electrostatic field resulting from materials’ different polarities.

“This is the first time we have been able to study the polar discontinuity effect in a 1-D boundary,” Li said.

Although the researchers focused on gaining a fundamental understanding of the system, they note their study could culminate in applications that take advantage of the 1-D interface.

“For instance, the 1-D chain of electrons could be exploited to pass a current along the boundary,” Li said. “It could be useful for electronics, especially for ultra-thin or flexible devices.”

The team plans to continue examining different aspects of the boundary including its magnetic properties and the effect of its supporting substrate.

The study is published as “Spatially resolved one-dimensional boundary states in graphene–hexagonal boron nitride planar heterostructures.” Coauthors are ORNL’s Jewook Park, Jaekwang Lee, Corentin Durand, Changwon Park, Bobby Sumpter, Arthur Baddorf, Mina Yoon and An-Ping Li; the University of Tennessee’s Lei Liu, Ali Mohsin, and Gong Gu; and Central Methodist University’s Kendal Clark.

This research was conducted in part at the Center for Nanophase Materials Sciences and the National Energy Research Scientific Computing Center, both DOE Office of Science User Facilities. The research was supported by DOE’s Office of Science, ORNL’s Laboratory Directed Research and Development program, the National Science Foundation and DARPA.

ORNL is managed by UT-Battelle for the Department of Energy's Office of Science. DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit http://science.energy.gov

Morgan McCorkle | EurekAlert!
Further information:
http://www.ornl.gov/ornl/news/news-releases/2014/ornl-materials-researchers-get-first-look-at-atom-thin-boundaries

More articles from Materials Sciences:

nachricht Researchers printed graphene-like materials with inkjet
18.08.2017 | Aalto University

nachricht Superconductivity research reveals potential new state of matter
17.08.2017 | DOE/Los Alamos National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>