Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ORNL-Led Team Demonstrates Desalination with Nanoporous Graphene Membrane

27.03.2015

Less than 1 percent of Earth’s water is drinkable. Removing salt and other minerals from our biggest available source of water—seawater—may help satisfy a growing global population thirsty for fresh water for drinking, farming, transportation, heating, cooling and industry. But desalination is an energy-intensive process, which concerns those wanting to expand its application.

Now, a team of experimentalists led by the Department of Energy’s Oak Ridge National Laboratory has demonstrated an energy-efficient desalination technology that uses a porous membrane made of strong, slim graphene—a carbon honeycomb one atom thick. The results are published in the March 23 advance online issue of Nature Nanotechnology.


Oak Ridge National Laboratory, US Dept. of Energy

Researchers created nanopores in graphene (red, and enlarged in the circle to highlight its honeycomb structure) that are stabilized with silicon atoms (yellow) and showed their porous membrane could desalinate seawater. Orange represents a non-graphene residual polymer.

Image credit: Oak Ridge National Laboratory, US Dept. of Energy

“Our work is a proof of principle that demonstrates how you can desalinate saltwater using free-standing, porous graphene,” said Shannon Mark Mahurin of ORNL’s Chemical Sciences Division, who co-led the study with Ivan Vlassiouk in ORNL’s Energy and Transportation Science Division.

“It’s a huge advance,” said Vlassiouk, pointing out a wealth of water travels through the porous graphene membrane. “The flux through the current graphene membranes was at least an order of magnitude higher than [that through] state-of-the-art reverse osmosis polymeric membranes.”

Current methods for purifying water include distillation and reverse osmosis. Distillation, or heating a mixture to extract volatile components that condense, requires a significant amount of energy. Reverse osmosis, a more energy-efficient process that nonetheless requires a fair amount of energy, is the basis for the ORNL technology.

Making pores in the graphene is key. Without these holes, water cannot travel from one side of the membrane to the other. The water molecules are simply too big to fit through graphene’s fine mesh. But poke holes in the mesh that are just the right size, and water molecules can penetrate. Salt ions, in contrast, are larger than water molecules and cannot cross the membrane.

The porous membrane allows osmosis, or passage of a fluid through a semipermeable membrane into a solution in which the solvent is more concentrated. “If you have saltwater on one side of a porous membrane and freshwater on the other, an osmotic pressure tends to bring the water back to the saltwater side. But if you overcome that, and you reverse that, and you push the water from the saltwater side to the freshwater side—that’s the reverse osmosis process,” Mahurin explained.

Today reverse-osmosis filters are typically polymers. A filter is thin and resides on a support. It takes significant pressure to push water from the saltwater side to the freshwater side. “If you can make the membrane more porous and thinner, you can increase the flux through the membrane and reduce the pressure requirements, within limits,” Mahurin said. “That all serves to reduce the amount of energy that it takes to drive the process.”

Graphene to the rescue
Graphene is only one-atom thick, yet flexible and strong. Its mechanical and chemical stabilities make it promising in membranes for separations. A porous graphene membrane could be more permeable than a polymer membrane, so separated water would drive faster through the membrane under the same conditions, the scientists reasoned. “If we can use this single layer of graphene, we could then increase the flux and reduce the membrane area to accomplish that same purification process,” Mahurin said.

To make graphene for the membrane, the researchers flowed methane through a tube furnace at 1,000 degrees C over a copper foil that catalyzed its decomposition into carbon and hydrogen. The chemical vapor deposited carbon atoms that self-assembled into adjoining hexagons to form a sheet one atom thick.

The researchers transferred the graphene membrane to a silicon nitride support with a micrometer-sized hole. Then the team exposed the graphene to an oxygen plasma that knocked carbon atoms out of the graphene’s nanoscale chicken wire lattice to create pores. The longer the graphene membrane was exposed to the plasma, the bigger the pores that formed, and the more made.

The prepared membrane separated two water solutions—salty water on one side, fresh on the other. The silicon nitride chip held the graphene membrane in place while water flowed through it from one chamber to the other. The membrane allowed rapid transport of water through the membrane and rejected nearly 100 percent of the salt ions, e.g., positively charged sodium atoms and negatively charged chloride atoms.

To figure out the best pore size for desalination, the researchers relied on the Center for Nanophase Materials Sciences (CNMS), a DOE Office of Science User Facility at ORNL. There, aberration-corrected scanning transmission electron microscopy (STEM) imaging, led by Raymond Unocic, allowed for atom-resolution imaging of graphene, which the scientists used to correlate the porosity of the graphene membrane with transport properties. They determined the optimum pore size for effective desalination was 0.5 to 1 nanometers, Mahurin said.

They also found the optimal density of pores for desalination was one pore for every 100 square nanometers. “The more pores you get, the better, up to a point until you start to degrade any mechanical stability,” Mahurin said.

Vlassiouk said making the porous graphene membranes used in the experiment is viable on an industrial scale, and other methods of production of the pores can be explored. “Various approaches have been tried, including irradiation with electrons and ions, but none of them worked. So far, the oxygen plasma approach worked the best,” he added. He worries more about gremlins that plague today’s reverse osmosis membranes—growths on membrane surfaces that clog them (called “biofouling”) and ensuring the mechanical stability of a membrane under pressure.

Mahurin, Vlassiouk and Sheng Dai, of both ORNL and the University of Tennessee, Knoxville, conceived the idea and designed the experiments. Vlassiouk prepared membranes and measured ion transport. Sumedh Surwade of ORNL performed water transport experiments and made pores in graphene. Unocic performed aberration-corrected STEM to reveal atomic structure. Gabriel Veith of ORNL revealed the detailed chemical composition with x-ray photoelectron spectroscopy measurements and analyzed the results. Mahurin, Vlassiouk, Surwade, Dai and Sergei Smirnov of New Mexico State University analyzed the data and interpreted the results.

The title of the paper is “Water Desalination Using Nanoporous Single-Layer Graphene.”

Research was sponsored by ORNL’s Laboratory Directed Research and Development Program. A portion of the work was conducted at the CNMS, a DOE Office of Science User Facility at ORNL.

UT-Battelle manages ORNL for DOE’s Office of Science. The single largest supporter of basic research in the physical sciences in the United States, the Office of Science is working to address some of the most pressing challenges of our time.—by Dawn Levy

Contact Information
Dawn Levy
Communications
Oak Ridge National Laboratory
(865) 576-6448; levyd@ornl.gov

Dawn Levy | newswise
Further information:
http://www.ornl.gov/news

Further reports about: ORNL’s Oak desalination freshwater graphene osmosis pores porous pressure silicon nitride water molecules

More articles from Materials Sciences:

nachricht Manchester scientists tie the tightest knot ever achieved
13.01.2017 | University of Manchester

nachricht CWRU directly measures how perovskite solar films efficiently convert light to power
12.01.2017 | Case Western Reserve University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>