Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Optimising soft-optoelectronics materials through molecular engineering

24.03.2015

Molecules used to make optoelectronic devices can be engineered to have specific properties, making the production of high-performance optoelectronic devices more efficient, according to a paper in Science and Technology of Advanced Materials.

The molecules used to make optoelectronic devices can be engineered to balance the chemical interactions within them and optimise their properties for specific applications, according to a review paper published in the journal Science and Technology of Advanced Materials.


Copyright : Source: Sci. Technol. Adv. Mater. Vol. 16 (2015) 014805, Scheme 1.

This paper, by researchers at the National Institute for Materials Science (NIMS) in Japan, proposes engineering strategies that could advance the manufacture of a range of devices.

Optoelectronic devices convert electricity into light, or light into electricity, and are integral to an increasing number of devices. For example, many television and mobile device displays are made with optoelectronic organic light-emitting diodes (OLEDs). Optoelectronics are also central to solar-powered devices, fibre optic communication and some electronic chips.

Many materials that are used to make optoelectronics consist of “π-conjugated” molecules that feature a complex form of chemical bonding in which many electrons are shared between many atoms. This bonding confers electronic and optical properties that are ideal for optoelectronics, but also leads to limitations. For example, at room temperature, most of these materials are solid and, therefore, unsuitable for flexible devices. What’s more, π-conjugated molecules tend to be insoluble in solvents and difficult to work with in printing technology.

However, these properties can be changed by attaching alkyl chains to the π-conjugated molecules (alkyl chains have a backbone of carbon atoms, but can vary in length and branching structure). Scientists lack a complete understanding of how alkyl chains affect the properties of π-conjugated molecules, but Fengniu Lu and Takashi Nakanishi of NIMS have reviewed a range of studies to determine the fundamental rules of the process.

(Since 2005, Dr. Nakanishi has himself invented a way to control the self assembly of linear alkyl chains, such as alkylated-fullerenes, to π-conjugated molecules. In addition, he recently developed an intriguing technique to create luminescent, room temperature “liquid” π-conjugated molecules by wrapping the π-moiety up with several branched alkyl chains.)

To assess the effects of attached alkyl chains, the NIMS team collated research that studied the properties of π-conjugated molecules modified with specific alkyl chains. Some studies demonstrated that different types of alkyl chains, solvent polarity, temperature and chain–substrate interactions led to the assembly of π-conjugated molecules into various two- and three-dimensional structures.

Other studies showed that alkyl chains with certain structures allowed the formation of “thermotropic” liquid crystalline materials — which have properties between those of hard solids and soft liquids — as well as the formation of materials that were “isotropic” liquids at room temperature and from which photoconducting liquid crystals or gels could be formed. The authors describe this strategy as “alkyl-π engineering” in their review article.

The researchers conclude that changes in the properties of alkylated-π molecules depend upon the precise balance of the interactions among the π-conjugated units as well as static interactions (known as van der Waals forces) among the alkyl chains. Different alkyl chains affect the balance of these interactions, leading to different molecular structures and properties. This insight will allow researchers to deliberately engineer π-conjugated molecules to have specific properties, making the production of high-performance optoelectronic devices more efficient.

For further information contact:
Dr. Takashi Nakanishi
International Center for Materials Nanoarchitectonics (MANA),
National Institute for Materials Science (NIMS)
Tsukuba, Japan
Tel: +81-29-860-4740
Email: nakanishi.takashi@nims.go.jp


More information about the research paper:
Sci. Technol. Adv. Mater. Vol. 16 (2015) 014805
doi:10.1088/1468-6996/16/1/ 014805
Alkyl-π engineering in state control toward versatile optoelectronic soft materials
Fengniu Lu and Takashi Nakanishi


Journal Information
Science and Technology of Advanced Materials (STAM) is the leading open access, international journal for outstanding research articles across all aspects of materials science. Our audience is the international materials community across the disciplines of materials science, physics, chemistry, biology as well as engineering.

The journal covers a broad spectrum of materials science research including functional materials, synthesis and processing, theoretical analyses, characterization and properties of materials. Emphasis is placed on the interdisciplinary nature of materials science and issues at the forefront of the field, such as energy and environmental issues, as well as medical and bioengineering applications
http://iopscience.iop.org/1468-6996

For more information about the journal Science and Technology of Advanced Materials, please contact

Mikiko Tanifuji
TITLE: Publishing Director
National Institute for Materials Science
Email: TANIFUJI.Mikiko@nims.go.jp


Associated links
Alkyl-π engineering in state control toward versatile optoelectronic soft materials

Journal information

Science and Technology of Advanced Materials

Mikiko Tanifuji | ResearchSEA
Further information:
http://www.nims.go.jp/eng/
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Decoding cement's shape promises greener concrete
08.12.2016 | Rice University

nachricht Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D
08.12.2016 | DOE/Brookhaven National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>