Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Optimising soft-optoelectronics materials through molecular engineering

24.03.2015

Molecules used to make optoelectronic devices can be engineered to have specific properties, making the production of high-performance optoelectronic devices more efficient, according to a paper in Science and Technology of Advanced Materials.

The molecules used to make optoelectronic devices can be engineered to balance the chemical interactions within them and optimise their properties for specific applications, according to a review paper published in the journal Science and Technology of Advanced Materials.


Copyright : Source: Sci. Technol. Adv. Mater. Vol. 16 (2015) 014805, Scheme 1.

This paper, by researchers at the National Institute for Materials Science (NIMS) in Japan, proposes engineering strategies that could advance the manufacture of a range of devices.

Optoelectronic devices convert electricity into light, or light into electricity, and are integral to an increasing number of devices. For example, many television and mobile device displays are made with optoelectronic organic light-emitting diodes (OLEDs). Optoelectronics are also central to solar-powered devices, fibre optic communication and some electronic chips.

Many materials that are used to make optoelectronics consist of “π-conjugated” molecules that feature a complex form of chemical bonding in which many electrons are shared between many atoms. This bonding confers electronic and optical properties that are ideal for optoelectronics, but also leads to limitations. For example, at room temperature, most of these materials are solid and, therefore, unsuitable for flexible devices. What’s more, π-conjugated molecules tend to be insoluble in solvents and difficult to work with in printing technology.

However, these properties can be changed by attaching alkyl chains to the π-conjugated molecules (alkyl chains have a backbone of carbon atoms, but can vary in length and branching structure). Scientists lack a complete understanding of how alkyl chains affect the properties of π-conjugated molecules, but Fengniu Lu and Takashi Nakanishi of NIMS have reviewed a range of studies to determine the fundamental rules of the process.

(Since 2005, Dr. Nakanishi has himself invented a way to control the self assembly of linear alkyl chains, such as alkylated-fullerenes, to π-conjugated molecules. In addition, he recently developed an intriguing technique to create luminescent, room temperature “liquid” π-conjugated molecules by wrapping the π-moiety up with several branched alkyl chains.)

To assess the effects of attached alkyl chains, the NIMS team collated research that studied the properties of π-conjugated molecules modified with specific alkyl chains. Some studies demonstrated that different types of alkyl chains, solvent polarity, temperature and chain–substrate interactions led to the assembly of π-conjugated molecules into various two- and three-dimensional structures.

Other studies showed that alkyl chains with certain structures allowed the formation of “thermotropic” liquid crystalline materials — which have properties between those of hard solids and soft liquids — as well as the formation of materials that were “isotropic” liquids at room temperature and from which photoconducting liquid crystals or gels could be formed. The authors describe this strategy as “alkyl-π engineering” in their review article.

The researchers conclude that changes in the properties of alkylated-π molecules depend upon the precise balance of the interactions among the π-conjugated units as well as static interactions (known as van der Waals forces) among the alkyl chains. Different alkyl chains affect the balance of these interactions, leading to different molecular structures and properties. This insight will allow researchers to deliberately engineer π-conjugated molecules to have specific properties, making the production of high-performance optoelectronic devices more efficient.

For further information contact:
Dr. Takashi Nakanishi
International Center for Materials Nanoarchitectonics (MANA),
National Institute for Materials Science (NIMS)
Tsukuba, Japan
Tel: +81-29-860-4740
Email: nakanishi.takashi@nims.go.jp


More information about the research paper:
Sci. Technol. Adv. Mater. Vol. 16 (2015) 014805
doi:10.1088/1468-6996/16/1/ 014805
Alkyl-π engineering in state control toward versatile optoelectronic soft materials
Fengniu Lu and Takashi Nakanishi


Journal Information
Science and Technology of Advanced Materials (STAM) is the leading open access, international journal for outstanding research articles across all aspects of materials science. Our audience is the international materials community across the disciplines of materials science, physics, chemistry, biology as well as engineering.

The journal covers a broad spectrum of materials science research including functional materials, synthesis and processing, theoretical analyses, characterization and properties of materials. Emphasis is placed on the interdisciplinary nature of materials science and issues at the forefront of the field, such as energy and environmental issues, as well as medical and bioengineering applications
http://iopscience.iop.org/1468-6996

For more information about the journal Science and Technology of Advanced Materials, please contact

Mikiko Tanifuji
TITLE: Publishing Director
National Institute for Materials Science
Email: TANIFUJI.Mikiko@nims.go.jp


Associated links
Alkyl-π engineering in state control toward versatile optoelectronic soft materials

Journal information

Science and Technology of Advanced Materials

Mikiko Tanifuji | ResearchSEA
Further information:
http://www.nims.go.jp/eng/
http://www.researchsea.com

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>