Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Optimising soft-optoelectronics materials through molecular engineering

24.03.2015

Molecules used to make optoelectronic devices can be engineered to have specific properties, making the production of high-performance optoelectronic devices more efficient, according to a paper in Science and Technology of Advanced Materials.

The molecules used to make optoelectronic devices can be engineered to balance the chemical interactions within them and optimise their properties for specific applications, according to a review paper published in the journal Science and Technology of Advanced Materials.


Copyright : Source: Sci. Technol. Adv. Mater. Vol. 16 (2015) 014805, Scheme 1.

This paper, by researchers at the National Institute for Materials Science (NIMS) in Japan, proposes engineering strategies that could advance the manufacture of a range of devices.

Optoelectronic devices convert electricity into light, or light into electricity, and are integral to an increasing number of devices. For example, many television and mobile device displays are made with optoelectronic organic light-emitting diodes (OLEDs). Optoelectronics are also central to solar-powered devices, fibre optic communication and some electronic chips.

Many materials that are used to make optoelectronics consist of “π-conjugated” molecules that feature a complex form of chemical bonding in which many electrons are shared between many atoms. This bonding confers electronic and optical properties that are ideal for optoelectronics, but also leads to limitations. For example, at room temperature, most of these materials are solid and, therefore, unsuitable for flexible devices. What’s more, π-conjugated molecules tend to be insoluble in solvents and difficult to work with in printing technology.

However, these properties can be changed by attaching alkyl chains to the π-conjugated molecules (alkyl chains have a backbone of carbon atoms, but can vary in length and branching structure). Scientists lack a complete understanding of how alkyl chains affect the properties of π-conjugated molecules, but Fengniu Lu and Takashi Nakanishi of NIMS have reviewed a range of studies to determine the fundamental rules of the process.

(Since 2005, Dr. Nakanishi has himself invented a way to control the self assembly of linear alkyl chains, such as alkylated-fullerenes, to π-conjugated molecules. In addition, he recently developed an intriguing technique to create luminescent, room temperature “liquid” π-conjugated molecules by wrapping the π-moiety up with several branched alkyl chains.)

To assess the effects of attached alkyl chains, the NIMS team collated research that studied the properties of π-conjugated molecules modified with specific alkyl chains. Some studies demonstrated that different types of alkyl chains, solvent polarity, temperature and chain–substrate interactions led to the assembly of π-conjugated molecules into various two- and three-dimensional structures.

Other studies showed that alkyl chains with certain structures allowed the formation of “thermotropic” liquid crystalline materials — which have properties between those of hard solids and soft liquids — as well as the formation of materials that were “isotropic” liquids at room temperature and from which photoconducting liquid crystals or gels could be formed. The authors describe this strategy as “alkyl-π engineering” in their review article.

The researchers conclude that changes in the properties of alkylated-π molecules depend upon the precise balance of the interactions among the π-conjugated units as well as static interactions (known as van der Waals forces) among the alkyl chains. Different alkyl chains affect the balance of these interactions, leading to different molecular structures and properties. This insight will allow researchers to deliberately engineer π-conjugated molecules to have specific properties, making the production of high-performance optoelectronic devices more efficient.

For further information contact:
Dr. Takashi Nakanishi
International Center for Materials Nanoarchitectonics (MANA),
National Institute for Materials Science (NIMS)
Tsukuba, Japan
Tel: +81-29-860-4740
Email: nakanishi.takashi@nims.go.jp


More information about the research paper:
Sci. Technol. Adv. Mater. Vol. 16 (2015) 014805
doi:10.1088/1468-6996/16/1/ 014805
Alkyl-π engineering in state control toward versatile optoelectronic soft materials
Fengniu Lu and Takashi Nakanishi


Journal Information
Science and Technology of Advanced Materials (STAM) is the leading open access, international journal for outstanding research articles across all aspects of materials science. Our audience is the international materials community across the disciplines of materials science, physics, chemistry, biology as well as engineering.

The journal covers a broad spectrum of materials science research including functional materials, synthesis and processing, theoretical analyses, characterization and properties of materials. Emphasis is placed on the interdisciplinary nature of materials science and issues at the forefront of the field, such as energy and environmental issues, as well as medical and bioengineering applications
http://iopscience.iop.org/1468-6996

For more information about the journal Science and Technology of Advanced Materials, please contact

Mikiko Tanifuji
TITLE: Publishing Director
National Institute for Materials Science
Email: TANIFUJI.Mikiko@nims.go.jp


Associated links
Alkyl-π engineering in state control toward versatile optoelectronic soft materials

Journal information

Science and Technology of Advanced Materials

Mikiko Tanifuji | ResearchSEA
Further information:
http://www.nims.go.jp/eng/
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Switched-on DNA
20.02.2017 | Arizona State University

nachricht Using a simple, scalable method, a material that can be used as a sensor is developed
15.02.2017 | University of the Basque Country

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>