Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Optimising soft-optoelectronics materials through molecular engineering

24.03.2015

Molecules used to make optoelectronic devices can be engineered to have specific properties, making the production of high-performance optoelectronic devices more efficient, according to a paper in Science and Technology of Advanced Materials.

The molecules used to make optoelectronic devices can be engineered to balance the chemical interactions within them and optimise their properties for specific applications, according to a review paper published in the journal Science and Technology of Advanced Materials.


Copyright : Source: Sci. Technol. Adv. Mater. Vol. 16 (2015) 014805, Scheme 1.

This paper, by researchers at the National Institute for Materials Science (NIMS) in Japan, proposes engineering strategies that could advance the manufacture of a range of devices.

Optoelectronic devices convert electricity into light, or light into electricity, and are integral to an increasing number of devices. For example, many television and mobile device displays are made with optoelectronic organic light-emitting diodes (OLEDs). Optoelectronics are also central to solar-powered devices, fibre optic communication and some electronic chips.

Many materials that are used to make optoelectronics consist of “π-conjugated” molecules that feature a complex form of chemical bonding in which many electrons are shared between many atoms. This bonding confers electronic and optical properties that are ideal for optoelectronics, but also leads to limitations. For example, at room temperature, most of these materials are solid and, therefore, unsuitable for flexible devices. What’s more, π-conjugated molecules tend to be insoluble in solvents and difficult to work with in printing technology.

However, these properties can be changed by attaching alkyl chains to the π-conjugated molecules (alkyl chains have a backbone of carbon atoms, but can vary in length and branching structure). Scientists lack a complete understanding of how alkyl chains affect the properties of π-conjugated molecules, but Fengniu Lu and Takashi Nakanishi of NIMS have reviewed a range of studies to determine the fundamental rules of the process.

(Since 2005, Dr. Nakanishi has himself invented a way to control the self assembly of linear alkyl chains, such as alkylated-fullerenes, to π-conjugated molecules. In addition, he recently developed an intriguing technique to create luminescent, room temperature “liquid” π-conjugated molecules by wrapping the π-moiety up with several branched alkyl chains.)

To assess the effects of attached alkyl chains, the NIMS team collated research that studied the properties of π-conjugated molecules modified with specific alkyl chains. Some studies demonstrated that different types of alkyl chains, solvent polarity, temperature and chain–substrate interactions led to the assembly of π-conjugated molecules into various two- and three-dimensional structures.

Other studies showed that alkyl chains with certain structures allowed the formation of “thermotropic” liquid crystalline materials — which have properties between those of hard solids and soft liquids — as well as the formation of materials that were “isotropic” liquids at room temperature and from which photoconducting liquid crystals or gels could be formed. The authors describe this strategy as “alkyl-π engineering” in their review article.

The researchers conclude that changes in the properties of alkylated-π molecules depend upon the precise balance of the interactions among the π-conjugated units as well as static interactions (known as van der Waals forces) among the alkyl chains. Different alkyl chains affect the balance of these interactions, leading to different molecular structures and properties. This insight will allow researchers to deliberately engineer π-conjugated molecules to have specific properties, making the production of high-performance optoelectronic devices more efficient.

For further information contact:
Dr. Takashi Nakanishi
International Center for Materials Nanoarchitectonics (MANA),
National Institute for Materials Science (NIMS)
Tsukuba, Japan
Tel: +81-29-860-4740
Email: nakanishi.takashi@nims.go.jp


More information about the research paper:
Sci. Technol. Adv. Mater. Vol. 16 (2015) 014805
doi:10.1088/1468-6996/16/1/ 014805
Alkyl-π engineering in state control toward versatile optoelectronic soft materials
Fengniu Lu and Takashi Nakanishi


Journal Information
Science and Technology of Advanced Materials (STAM) is the leading open access, international journal for outstanding research articles across all aspects of materials science. Our audience is the international materials community across the disciplines of materials science, physics, chemistry, biology as well as engineering.

The journal covers a broad spectrum of materials science research including functional materials, synthesis and processing, theoretical analyses, characterization and properties of materials. Emphasis is placed on the interdisciplinary nature of materials science and issues at the forefront of the field, such as energy and environmental issues, as well as medical and bioengineering applications
http://iopscience.iop.org/1468-6996

For more information about the journal Science and Technology of Advanced Materials, please contact

Mikiko Tanifuji
TITLE: Publishing Director
National Institute for Materials Science
Email: TANIFUJI.Mikiko@nims.go.jp


Associated links
Alkyl-π engineering in state control toward versatile optoelectronic soft materials

Journal information

Science and Technology of Advanced Materials

Mikiko Tanifuji | ResearchSEA
Further information:
http://www.nims.go.jp/eng/
http://www.researchsea.com

More articles from Materials Sciences:

nachricht An innovative high-performance material: biofibers made from green lacewing silk
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Treated carbon pulls radioactive elements from water
20.01.2017 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>