Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Open access infrastructure for a pilot line of nano particle and nano-composites

10.05.2016

“What opportunities does the nanotechnology provide in general, provide nanoparticles for my products and processes?” So far, this question cannot be answered easily. Preparation and modification of nanoparticles and the further processing require special technical infrastructure and complex knowledge. For small and medium businesses the construction of this infrastructure “just on luck” is often not worth it. Even large companies shy away from the risks. As a result many good ideas just stay in the drawer.

A simple and open access to high-class infrastructure for the reliable production of small batches of functionalized nanoparticles and nanocomposites for testing could ease the way towards new nano-based products for chemical and pharmaceutical companies.


Stirring reactor (100 liter) for upscaling of laboratory syntheses, equipped with in-situ analysis for particle size measurement to monitor and control processes.

K. Dobberke for Fraunhofer ISC


Molecular vaporizer for laboratory and pilot plant scale to separate and recover high boiling solvents in high vacuum atmosphere.

K. Dobberke for Fraunhofer ISC

The European Union has allocated funds for the construction of a number of pilot lines and open-access infrastructure within the framework of the EU project CoPilot. A consortium of 13 partners from research and industry, including nanotechnology specialist TNO from the Netherlands and the Fraunhofer Institute for Silicate Research ISC from Wuerzburg, Germany as well as seven nanomaterial manufacturers, is currently setting up the pilot line in Wuerzburg.

First, they establish the particle production, modification and compounding on pilot scale based on four different model systems. The approach enables maximum variability and flexibility for the pilot production of various particle systems and composites. Two further open access lines will be established at TNO in Eindhoven and at the Sueddeutsche Kunststoffzentrum SKZ in Selb.

The “nanoparticle kitchen”

Essential elements of the pilot line in Wuerzburg are the particle synthesis in batches up to 100 liters, modification and separation methods such as semi-continuous operating centrifuge and in-line analysis and techniques for the uniform and agglomeration free incorporation of nanoparticles into composites.

Dr. Karl Mandel, head of Particle Technology of Fraunhofer ISC, compares the pilot line with a high-tech kitchen: “We provide the top-notch equipment and the star chefs to synthesize a nano menu à la carte as well as nanoparticles according to individual requests. Thus, companies can test their own receipts – or our existing receipts – before they practice their own cooking or set up their nano kitchen.”

In the future, the EU project offers companies a contact point if they want to try their nano idea and require enough material for sampling and estimation of future production costs. This can, on the one hand, minimize the development risk, on the other hand, it maximizes the flexibility and production safety. To give lots of companies the opportunity to influence direction and structure/formation/setup of the nanoparticle kitchen, the project partners will offer open meetings on a regular basis.

The next workshop in this context takes place at Fraunhofer ISC in Wuerzburg, 7h July 2016. The partners present the pilot line and the first results of the four model systems – double layered hydroxide nanoparticle polymer composites for flame inhibiting fillers, titanium dioxide nanoparticles for high refractive index composites, magnetic particles for innovative catalysts and hollow silica composites for anti-glare coatings. Interested companies can find more information about the upcoming workshop on the website of the project www.h2020copilot.eu  and on the website of Fraunhofer ISC www.isc.fraunhofer.de  that hosts the event.

This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No 645993.

Weitere Informationen:

http://www.isc.fraunhofer.de
http://www.h2020copilot.eu

Marie-Luise Righi | Fraunhofer-Institut für Silicatforschung ISC

More articles from Materials Sciences:

nachricht Melting solid below the freezing point
23.01.2017 | Carnegie Institution for Science

nachricht An innovative high-performance material: biofibers made from green lacewing silk
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>