Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Open access infrastructure for a pilot line of nano particle and nano-composites

10.05.2016

“What opportunities does the nanotechnology provide in general, provide nanoparticles for my products and processes?” So far, this question cannot be answered easily. Preparation and modification of nanoparticles and the further processing require special technical infrastructure and complex knowledge. For small and medium businesses the construction of this infrastructure “just on luck” is often not worth it. Even large companies shy away from the risks. As a result many good ideas just stay in the drawer.

A simple and open access to high-class infrastructure for the reliable production of small batches of functionalized nanoparticles and nanocomposites for testing could ease the way towards new nano-based products for chemical and pharmaceutical companies.


Stirring reactor (100 liter) for upscaling of laboratory syntheses, equipped with in-situ analysis for particle size measurement to monitor and control processes.

K. Dobberke for Fraunhofer ISC


Molecular vaporizer for laboratory and pilot plant scale to separate and recover high boiling solvents in high vacuum atmosphere.

K. Dobberke for Fraunhofer ISC

The European Union has allocated funds for the construction of a number of pilot lines and open-access infrastructure within the framework of the EU project CoPilot. A consortium of 13 partners from research and industry, including nanotechnology specialist TNO from the Netherlands and the Fraunhofer Institute for Silicate Research ISC from Wuerzburg, Germany as well as seven nanomaterial manufacturers, is currently setting up the pilot line in Wuerzburg.

First, they establish the particle production, modification and compounding on pilot scale based on four different model systems. The approach enables maximum variability and flexibility for the pilot production of various particle systems and composites. Two further open access lines will be established at TNO in Eindhoven and at the Sueddeutsche Kunststoffzentrum SKZ in Selb.

The “nanoparticle kitchen”

Essential elements of the pilot line in Wuerzburg are the particle synthesis in batches up to 100 liters, modification and separation methods such as semi-continuous operating centrifuge and in-line analysis and techniques for the uniform and agglomeration free incorporation of nanoparticles into composites.

Dr. Karl Mandel, head of Particle Technology of Fraunhofer ISC, compares the pilot line with a high-tech kitchen: “We provide the top-notch equipment and the star chefs to synthesize a nano menu à la carte as well as nanoparticles according to individual requests. Thus, companies can test their own receipts – or our existing receipts – before they practice their own cooking or set up their nano kitchen.”

In the future, the EU project offers companies a contact point if they want to try their nano idea and require enough material for sampling and estimation of future production costs. This can, on the one hand, minimize the development risk, on the other hand, it maximizes the flexibility and production safety. To give lots of companies the opportunity to influence direction and structure/formation/setup of the nanoparticle kitchen, the project partners will offer open meetings on a regular basis.

The next workshop in this context takes place at Fraunhofer ISC in Wuerzburg, 7h July 2016. The partners present the pilot line and the first results of the four model systems – double layered hydroxide nanoparticle polymer composites for flame inhibiting fillers, titanium dioxide nanoparticles for high refractive index composites, magnetic particles for innovative catalysts and hollow silica composites for anti-glare coatings. Interested companies can find more information about the upcoming workshop on the website of the project www.h2020copilot.eu  and on the website of Fraunhofer ISC www.isc.fraunhofer.de  that hosts the event.

This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No 645993.

Weitere Informationen:

http://www.isc.fraunhofer.de
http://www.h2020copilot.eu

Marie-Luise Righi | Fraunhofer-Institut für Silicatforschung ISC

More articles from Materials Sciences:

nachricht Strange but true: Turning a material upside down can sometimes make it softer
20.10.2017 | Universitat Autonoma de Barcelona

nachricht Metallic nanoparticles will help to determine the percentage of volatile compounds
20.10.2017 | Lomonosov Moscow State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>