Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

On-Surface Chemistry Leads to Novel Products

13.09.2016

On-surface chemical reactions can lead to novel chemical compounds not yet synthesized by solution chemistry. The first-step, second-step, and third-step products can be analyzed in detail using a high-resolution atomic force microscope, as demonstrated in Nature Communications by scientists from the Swiss Nanoscience Institute and the Department of Physics at Basel University and their colleagues from Japan and Finland.

In numerous nanotechnology applications, individual molecules are placed on surfaces to fulfill specific functions – such as conducting an electrical current or emitting a light signal. Ideally, scientists will synthetize these sometimes extremely complex chemical compounds directly on the surface.


Catalyzed by the copper atoms of the surface, the precursor molecule alters its structure and spatial arrangement when heated gradually.

(Illustration: University of Basel, Department of Physics)

The on-surface chemical reactions can be followed step by step with the aid of ultra-high-resolution atomic force microscopes. The data obtained also enables them to calculate the precise molecular structure and the energetics along the path.

For their experiments, colleagues of Professor Ernst Meyer from the University of Basel selected a molecule consisting of three benzene rings joined by a triple bond. When the researchers apply this molecule to a silver surface, the molecules arrange themselves in a consistent pattern – but there is no chemical reaction.

Copper as a catalyst

On a copper surface, however, the molecules react already at a temperature of -123 °C. Catalyzed by the copper atoms, the precursor molecule incorporates two hydrogen atoms thereby altering its structure and spatial arrangement. When the sample is heated to 200 °C, a further reaction step takes place in which two pentagonal rings are formed.

A further increase in temperature to 400 °C causes a cleaving of hydrogen atoms and forms a further carbon-carbon bond. The final two reaction steps lead to aromatic hydrocarbon compounds, which had previously not been synthetized in solution chemistry.

The researchers conducted these experiments in ultra-high vacuum conditions and were able to monitor the synthesis using a high-resolution atomic force microscope with a carbon monoxide terminated tip. Comparative computer calculations generated the precise molecular structure, which perfectly matched the microscope images.

Tailored nanostructures

Through their experiments, the international research team has shown that on-surface chemistry can lead to novel products. “This extremely pure form of chemistry provides us with tailored on-surface nanostructures that can be used in a variety of ways,” says Meyer, commenting on the work largely performed by Dr. Shigeki Kawai. In the example presented, the copper surface functions as a catalyst; the chemical reaction of the precursor molecules is controlled by adding heat and can be monitored via atomic force microscopy.

Original paper

Shigeki Kawai, Ville Haapasilta, Benjamin D. Lindner, Kazukuni Tahara, Peter Spijker, Jeroen A. Buitendijk, Rémy Pawlak, Tobias Meier, Yoshito Tobe, Adam S. Foster, and Ernst Meyer
Thermal control of a sequential on-surface transformation of a hydrocarbon molecule on copper surface
Nature Communications (2016), doi: 10.1038/ncomms12711

Further information

Professor Ernst Meyer, University of Basel, Department of Physics, tel. +41 61 267 37 24, email: ernst.meyer@unibas.ch

Reto Caluori | Universität Basel
Further information:
http://www.unibas.ch

More articles from Materials Sciences:

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

nachricht A rhodium-based catalyst for making organosilicon using less precious metal
22.06.2017 | Tokyo Institute of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>