Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel nanostructures for efficient long-range energy transport

21.08.2015

The conversion of sunlight into electricity at low cost becomes increasingly important to meet the world's fast growing energy consumption. This task requires the development of new device concepts, in which particularly the transport of light-generated energy with minimal losses is a key aspect.

An interdisciplinary group of researchers from the Universities of Bayreuth and Erlangen-Nuremberg (Germany) report in Nature on nanofibers, which enable for the first time a directed energy transport over several micrometers at room temperature. This transport distance can only be explained with quantum coherence effects along the individual nanofibers.


This is a supramolecular nanofiber consisting of more than 10,000 perfectly ordered building blocks, which enables an energy transport over a distance of more than 4 micrometers at room temperature.

Picture by A. T. Haedler.

The research groups of Richard Hildner (Experimental Physics) and Hans-Werner Schmidt (Macromolecular Chemistry) at the University of Bayreuth prepared supramolecular nanofibers, which can comprise more than 10,000 identical building blocks. The core of the building block is a so-called carbonyl-bridged triarylamine.

This triarylamine derivative was synthesized by the research group of Milan Kivala (Organic Chemistry) at the University of Erlangen-Nuremberg and chemically modified at the University of Bayreuth. Three naphthalimidbithiophene chromophores are linked to this central unit.

Under specific conditions, the building blocks spontaneously self-assemble and form nanofibers with lengths of more than 4 micrometers and diameters of only 0.005 micrometer. For comparison: a human hair has a thickness of 50 to 100 micrometers.

With a combination of different microscopy techniques the scientists at the University of Bayreuth were able to visualize the transport of excitation energy along these nanofibers. To achieve this long-range energy transport, the triarylamine cores of the building blocks, that are perfectly arranged face to face, act in concert. Thus, the energy can be transferred in a wave-like manner from one building block to the next: This phenomenon is called quantum coherence.

"These highly promising nanostructures demonstrate that carefully tailoring materials for the efficient transport of light energy is an emerging research area" says Dr. Richard Hildner, an expert in the field of light harvesting at the University of Bayreuth.

The research area light harvesting aims at a precise description of the transport processes in natural photosynthetic machineries to use this knowledge for building novel nanostructures for power generation from sunlight. In this field interdisciplinary groups of researchers work together in the Bavarian initiative Solar Technologies Go Hybrid and in the Research Training Group Photophysics of synthetic and biological multichromophoric systems (GRK 1640) funded by the German Research Foundation (DFG).

Publication:

Andreas T. Haedler et al.: Long-Range Energy Transport in Single Supramolecular Nanofibres at Room Temperature,

Nature 523, 196 - 199 (2015), DOI: 10.1038/nature14570.

Contact:

Dr. Richard Hildner
Experimental Physics IV
University of Bayreuth
Phone: +49 (0) 921 55 4040
E-Mail: richard.hildner@uni-bayreuth.de

Prof. Dr. Hans-Werner Schmidt
Macromolecular Chemistry I
University of Bayreuth
Phone: +49 (0) 921 55 3200 und -3299
E-Mail: hans-werner.schmidt@uni-bayreuth.de

Media Contact

Hans-Werner Schmidt
hans-werner.schmidt@uni-bayreuth.de
49-092-155-3200

http://www.uni-bayreuth.de 

Hans-Werner Schmidt | EurekAlert!

More articles from Materials Sciences:

nachricht Physics, photosynthesis and solar cells
01.12.2016 | University of California - Riverside

nachricht New process produces hydrogen at much lower temperature
01.12.2016 | Waseda University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>