Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Novel nanostructures for efficient long-range energy transport


The conversion of sunlight into electricity at low cost becomes increasingly important to meet the world's fast growing energy consumption. This task requires the development of new device concepts, in which particularly the transport of light-generated energy with minimal losses is a key aspect.

An interdisciplinary group of researchers from the Universities of Bayreuth and Erlangen-Nuremberg (Germany) report in Nature on nanofibers, which enable for the first time a directed energy transport over several micrometers at room temperature. This transport distance can only be explained with quantum coherence effects along the individual nanofibers.

This is a supramolecular nanofiber consisting of more than 10,000 perfectly ordered building blocks, which enables an energy transport over a distance of more than 4 micrometers at room temperature.

Picture by A. T. Haedler.

The research groups of Richard Hildner (Experimental Physics) and Hans-Werner Schmidt (Macromolecular Chemistry) at the University of Bayreuth prepared supramolecular nanofibers, which can comprise more than 10,000 identical building blocks. The core of the building block is a so-called carbonyl-bridged triarylamine.

This triarylamine derivative was synthesized by the research group of Milan Kivala (Organic Chemistry) at the University of Erlangen-Nuremberg and chemically modified at the University of Bayreuth. Three naphthalimidbithiophene chromophores are linked to this central unit.

Under specific conditions, the building blocks spontaneously self-assemble and form nanofibers with lengths of more than 4 micrometers and diameters of only 0.005 micrometer. For comparison: a human hair has a thickness of 50 to 100 micrometers.

With a combination of different microscopy techniques the scientists at the University of Bayreuth were able to visualize the transport of excitation energy along these nanofibers. To achieve this long-range energy transport, the triarylamine cores of the building blocks, that are perfectly arranged face to face, act in concert. Thus, the energy can be transferred in a wave-like manner from one building block to the next: This phenomenon is called quantum coherence.

"These highly promising nanostructures demonstrate that carefully tailoring materials for the efficient transport of light energy is an emerging research area" says Dr. Richard Hildner, an expert in the field of light harvesting at the University of Bayreuth.

The research area light harvesting aims at a precise description of the transport processes in natural photosynthetic machineries to use this knowledge for building novel nanostructures for power generation from sunlight. In this field interdisciplinary groups of researchers work together in the Bavarian initiative Solar Technologies Go Hybrid and in the Research Training Group Photophysics of synthetic and biological multichromophoric systems (GRK 1640) funded by the German Research Foundation (DFG).


Andreas T. Haedler et al.: Long-Range Energy Transport in Single Supramolecular Nanofibres at Room Temperature,

Nature 523, 196 - 199 (2015), DOI: 10.1038/nature14570.


Dr. Richard Hildner
Experimental Physics IV
University of Bayreuth
Phone: +49 (0) 921 55 4040

Prof. Dr. Hans-Werner Schmidt
Macromolecular Chemistry I
University of Bayreuth
Phone: +49 (0) 921 55 3200 und -3299

Media Contact

Hans-Werner Schmidt

Hans-Werner Schmidt | EurekAlert!

More articles from Materials Sciences:

nachricht For graphite pellets, just add elbow grease
23.03.2018 | Rice University

nachricht Sensitive grip
23.03.2018 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>