Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIST collaboration heats up exotic topological insulators

01.11.2016

Fashion is changing in the avant-garde world of next-generation computer component materials. Traditional semiconductors like silicon are releasing their last new lines. Exotic materials called topological insulators (TIs) are on their way in. And when it comes to cool, nitrogen is the new helium.

This was clearly on display in a novel experiment at the National Institute of Standards and Technology (NIST) that was performed by a multi-institutional collaboration including UCLA, NIST and the Beijing Institute of Technology in China.


This topological insulator, doped with chromium (Cr) atoms, conducts electricity on its surface and possesses desirable magnetic properties at a higher range of temperatures than before when sandwiched between magnetic materials known as ferromagnets.

Credit: Hanacek/NIST

Topological insulators are a new class of materials that were discovered less than a decade ago after earlier theoretical work, recognized in the 2016 Nobel Prize in physics, predicted they could exist. The materials are electrical insulators on the inside and they conduct electricity on the outer surface. They are exciting to computer designers because electric current travels along them without shedding heat, meaning components made from them could reduce the high heat production that plagues modern computers.

They also might be harnessed one day in quantum computers, which would exploit less familiar properties of electrons, such as their spin, to make calculations in entirely new ways. When TIs conduct electricity, all of the electrons flowing in one direction have the same spin, a useful property that quantum computer designers could harness.

The special properties that make TIs so exciting for technologists are usually observed only at very low temperature, typically requiring liquid helium to cool the materials. Not only does this demand for extreme cold make TIs unlikely to find use in electronics until this problem is overcome, but it also makes it difficult to study them in the first place.

Furthermore, making TIs magnetic is key to developing exciting new computing devices with them. But even getting them to the point where they can be magnetized is a laborious process. Two ways to do this have been to infuse, or "dope," the TI with a small amount of magnetic metal and/or to stack thin layers of TI between alternating layers of a magnetic material known as a ferromagnet. However, increasing the doping to push the temperature higher disrupts the TI properties, while the alternate layers' more powerful magnetism can overwhelm the TIs, making them hard to study.

To get around these problems, UCLA scientists tried a different substance for the alternating layers: an antiferromagnet. Unlike the permanent magnets on your fridge, whose atoms all have north poles that point in the same direction, the multilayered antiferromagnetic (AFM) materials had north poles pointing one way in one layer, and the opposite way in the next layer. Because these layers' magnetism cancels each other out, the overall AFM doesn't have net magnetism--but a single layer of its molecules does. It was the outermost layer of the AFM that the UCLA team hoped to exploit.

Fortunately, they found that the outermost layer's influence magnetizes the TI, but without the overwhelming force that the previously used magnetic materials would bring. And they found that the new approach allowed the TIs to become magnetic and demonstrate all of the TI's appealing hallmarks at temperatures far above 77 Kelvin--still too cold for use as consumer electronics components, but warm enough that scientists can use nitrogen to cool them instead.

"It makes them far easier to study," says Alex Grutter of the NIST Center for Neutron Research, which partnered with the UCLA scientists to clarify the interactions between the overall material's layers as well as its spin structure.

"Not only can we explore TIs' properties more easily, but we're excited because to a physicist, finding one way to increase the operational temperature this dramatically suggests there might be other accessible ways to increase it again. Suddenly, room temperature TIs don't look as far out of reach."

###

Paper: Q.L. He, X. Kou, A.J. Grutter, G. Yin, L. Pan, X. Che, Y. Liu, T. Nie, B. Zhang, S.M. Disseler, B.J. Kirby, W. Ratcliff II, Q. Shao, K. Murata, X. Zhu, G. Yu, Y. Fan, M. Montazeri, X. Han, J.A. Borchers and K.L. Wang. Tailoring Exchange Couplings in Magnetic Topological Insulator/Antiferromagnet Heterostructures. Nature Materials, October 31, 2016. DOI: 10.1038/nmat4783

Media Contact

Chad Boutin
boutin@nist.gov
301-975-4261

 @usnistgov

http://www.nist.gov 

Chad Boutin | EurekAlert!

More articles from Materials Sciences:

nachricht Watching atoms move in hybrid perovskite crystals reveals clues to improving solar cells
22.11.2017 | University of California - San Diego

nachricht Fine felted nanotubes: CAU research team develops new composite material made of carbon nanotubes
22.11.2017 | Christian-Albrechts-Universität zu Kiel

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>