Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nickel for thought: Compound shows potential for high-temperature superconductivity

19.06.2017

A team of researchers at the U.S. Department of Energy's (DOE) Argonne National Laboratory has identified a nickel oxide compound as an unconventional but promising candidate material for high-temperature superconductivity.

The team successfully synthesized single crystals of a metallic trilayer nickelate compound, a feat the researchers believe to be a first.


Materials scientists at Argonne National Laboratory synthesized these single crystals of a metallic trilayer nickelate compound via a high-pressure crystal growth process. A team led by John Mitchell, an Argonne Distinguished Fellow and associate director of the laboratory's Materials Science Division, describe the compound's potential as a high-temperature superconductor in the June 12 issue of Nature Physics.

Credit: Argonne National Laboratory

"It's poised for superconductivity in a way not found in other nickel oxides. We're very hopeful that all we have to do now is find the right electron concentration."

This nickel oxide compound does not superconduct, said John Mitchell, an Argonne Distinguished Fellow and associate director of the laboratory's Materials Science Division, who led the project, which combined crystal growth, X-ray spectroscopy, and computational theory. But, he added, "It's poised for superconductivity in a way not found in other nickel oxides. We're very hopeful that all we have to do now is find the right electron concentration."

Mitchell and seven co-authors announced their results in this week's issue of Nature Physics.

Superconducting materials are technologically important because electricity flows through them without resistance. High-temperature superconductors could lead to faster, more efficient electronic devices, grids that can transmit power without energy loss and ultra-fast levitating trains that ride frictionless magnets instead of rails.

Only low-temperature superconductivity seemed possible before 1986, but materials that superconduct at low temperatures are impractical because they must first be cooled to hundreds of degrees below zero. In 1986, however, discovery of high-temperature superconductivity in copper oxide compounds called cuprates engendered new technological potential for the phenomenon.

But after three decades of ensuing research, exactly how cuprate superconductivity works remains a defining problem in the field. One approach to solving this problem has been to study compounds that have similar crystal, magnetic and electronic structures to the cuprates.

Nickel-based oxides - nickelates - have long been considered as potential cuprate analogs because the element sits immediately adjacent to copper in the periodic table. Thus far, Mitchell noted, "That's been an unsuccessful quest." As he and his co-authors noted in their Nature Physics paper, "None of these analogs have been superconducting, and few are even metallic."

The nickelate that the Argonne team has created is a quasi-two-dimensional trilayer compound, meaning that it consists of three layers of nickel oxide that are separated by spacer layers of praseodymium oxide.

"Thus it looks more two-dimensional than three-dimensional, structurally and electronically," Mitchell said.

This nickelate and a compound containing lanthanum rather than praseodymium both share the quasi-two-dimensional trilayer structure. But the lanthanum analog is non-metallic and adopts a so-called "charge-stripe" phase, an electronic property that makes the material an insulator, the opposite of a superconductor.

"For some yet-unknown reason, the praseodymium system does not form these stripes," Mitchell said. "It remains metallic and so is certainly the more likely candidate for superconductivity."

Argonne is one of a few laboratories in the world where the compound could be created. The Materials Science Division's high-pressure optical-image floating zone furnace has special capabilities. It can attain pressures of 150 atmospheres (equivalent to the crushing pressures found at oceanic depths of nearly 5,000 feet) and temperatures of approximately 2,000 degrees Celsius (more than 3,600 degrees Fahrenheit), conditions needed to grow the crystals.

"We didn't know for sure we could make these materials," said Argonne postdoctoral researcher Junjie Zhang, the first author on the study. But indeed, they managed to grow the crystals measuring a few millimeters in diameter (a small fraction of an inch).

The research team verified that the electronic structure of the nickelate resembles that of cuprate
materials by taking X-ray absorption spectroscopy measurements at the Advanced Photon Source, a DOE Office of Science User Facility, and by performing density functional theory calculations. Materials scientists use density functional theory to investigate the electronic properties of condensed matter systems.

"I've spent my entire career not making high-temperature superconductors," Mitchell joked. But that could change in the next phase of his team's research: attempting to induce superconductivity in their nickelate material using a chemical process called electron doping, in which impurities are deliberately added to a material to influence its properties.

###

For the original study published in Nature Physics, see "Large orbital polarization in a metallic square-planar nickelate." Other Argonne authors included Materials Science Division scientists Antia Botana, Daniel Phelan, Hong Zheng, Michael Norman, and John Freeland of the Advanced Photon Source; the other author was Victor Pardo of the University of Santiago de Compostela in Spain.

Funding was provided by the U.S. Department of Energy, Office of Science and the National Science Foundation.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

The U.S. Department of Energy's Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit the Office of Science website.

Media Contact

Jared Sagoff
jsagoff@anl.gov
630-252-5549

 @argonne

http://www.anl.gov 

Jared Sagoff | EurekAlert!

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>