Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New transparent luminous pigments provide high temperature stable protection against counterfeiting

12.04.2016

Research scientists at INM - Leibniz-Institute for New Materials have developed luminous particles that can also withstand high temperatures. When activated by UV light or x-rays, they glow orange red.

Everyone knows the small UV lamps at cash desks in supermarkets. They are used to verify whether “big banknotes” are genuine. To do so, colorful snippets light up inside the note. The luminous particles which cause this consist of organic compounds.


New transparent luminous pigments provide high temperature stable protection against counterfeiting.

Copyright: INM

They are not suitable for high temperatures because, in such cases, the luminous particles disintegrate. They therefore cannot be used to provide counterfeiting protection for objects that are subjected to high temperatures.

Now research scientists at INM – Leibniz-Institute for New Materials have developed luminous particles that can also withstand high temperatures. When activated by UV light or x-rays, they glow orange red.

The researchers will be presenting their results from 25 to 29 April 2016 in Hall 2 at the stand B46 of the Hannover Messe in the context of the leading trade fair for R & D and Technology Transfer.

Engine components in cars, high-grade machinery for the industrial sector or high-value appliances in private households – some of these everyday objects are subjected to high temperatures when used. Original automotive components and the corresponding spare parts are a seal of quality for manufacturers and consumers:

For the driver, original components mean that the risk of accident is lower. Originality of the parts can only be proven, if the counterfeit protection also withstands high temperatures and can be read easily. A missing counterfeit protection on forged spare parts guards the original manufacturer from claims for compensation.

“For our luminous pigments, we can achieve such temperature stability up to 600 degrees Celsius,” says INM’s Peter William de Oliveira. The developers at INM have succeeded in doing so by using a manufacturing method applying wet chemical processes.

“The particles not only fulfill the demands of high temperatures but through the addition of suitable solvents, they can also be converted into printable paste. Consequently, they can easily be printed onto many materials using screen printing, for example,” the Head of the InnovationCenter at INM explains further.

Using luminous pigments made of yttrium oxide or gadolinium oxide, printed designs are created in white or transparent that glow orange red in UV light or x-rays. With different manufacturing conditions, particles of between seven and approximately 600 nanometers can be achieved thus alloying the researchers to take different requirements and processes in industry into account.

Your contact at the stand:
Dr. Michael Opsölder
Jana Staudt

Your expert at INM:
Dr. Peter William de Oliveira
INM – Leibniz Institute for New Materials
Head Optical Materials
Head InnovationCenter INM
Phone: +49681-9300-148
OptiMat@leibniz-inm.de

INM conducts research and development to create new materials – for today, tomorrow and beyond. Chemists, physicists, biologists, materials scientists and engineers team up to focus on these essential questions: Which material properties are new, how can they be investigated and how can they be tailored for industrial applications in the future? Four research thrusts determine the current developments at INM: New materials for energy application, new concepts for medical surfaces, new surface materials for tribological systems and nano safety and nano bio. Research at INM is performed in three fields: Nanocomposite Technology, Interface Materials, and Bio Interfaces.
INM – Leibniz Institute for New Materials, situated in Saarbrücken, is an internationally leading center for materials research. It is an institute of the Leibniz Association and has about 220 employees.

Weitere Informationen:

http://www.leibniz-inm.de
http://www.leibniz-gemeinschaft.de

Dr. Carola Jung | idw - Informationsdienst Wissenschaft

Further reports about: INM Neue Materialien UV light high temperatures pigments

More articles from Materials Sciences:

nachricht Osaka university researchers make the slipperiest surfaces adhesive
18.10.2017 | Osaka University

nachricht Think laterally to sidestep production problems
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>