Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study of ferroelectrics offers roadmap to multivalued logic for neuromorphic computing

13.02.2017

Research published Wednesday, in Nature Scientific Reports lays out a theoretical map to use ferroelectric material to process information using multivalued logic - a leap beyond the simple ones and zeroes that make up our current computing systems that could let us process information much more efficiently.

The language of computers is written in just two symbols -- ones and zeroes, meaning yes or no. But a world of richer possibilities awaits us if we could expand to three or more values, so that the same physical switch could encode much more information.


A team of researchers from Argonne, the Lille University of Science and Technology and the University of Picardie Jules Verne have laid out a theoretical map to use ferroelectric material (a class of materials whose polarization can be controlled with electric fields) to process information using multivalued logic -- a leap beyond the simple ones and zeroes that make up our current computing systems that could let us process information much more efficiently. The diagram shows the configurations (yellow dots) where stable energy positions could allow us to encode information in thin films of ferroelectric material.

Credit: Baudry/Lukyanchuk/Vinokur

"Most importantly, this novel logic unit will enable information processing using not only "yes" and "no", but also "either yes or no" or "maybe" operations," said Valerii Vinokur, a materials scientist and Distinguished Fellow at the U.S. Department of Energy's Argonne National Laboratory and the corresponding author on the paper, along with Laurent Baudry with the Lille University of Science and Technology and Igor Lukyanchuk with the University of Picardie Jules Verne.

This is the way our brains operate, and they're something on the order of a million times more efficient than the best computers we've ever managed to build -- while consuming orders of magnitude less energy.

"Our brains process so much more information, but if our synapses were built like our current computers are, the brain would not just boil but evaporate from the energy they use," Vinokur said.

While the advantages of this type of computing, called multivalued logic, have long been known, the problem is that we haven't discovered a material system that could implement it. Right now, transistors can only operate as "on" or "off," so this new system would have to find a new way to consistently maintain more states -- as well as be easy to read and write and, ideally, to work at room temperature.

Hence Vinokur and the team's interest in ferroelectrics, a class of materials whose polarization can be controlled with electric fields. As ferroelectrics physically change shape when the polarization changes, they're very useful in sensors and other devices, such as medical ultrasound machines. Scientists are very interested in tapping these properties for computer memory and other applications; but the theory behind their behavior is very much still emerging.

The new paper lays out a recipe by which we could tap the properties of very thin films of a particular class of ferroelectric material called perovskites.

According to the calculations, perovskite films could hold two, three, or even four polarization positions that are energetically stable -- "so they could 'click' into place, and thus provide a stable platform for encoding information," Vinokur said.

The team calculated these stable configurations and how to manipulate the polarization to move it between stable positions using electric fields, Vinokur said.

"When we realize this in a device, it will enormously increase the efficiency of memory units and processors," Vinokur said. "This offers a significant step towards realization of so-called neuromorphic computing, which strives to model the human brain."

Vinokur said the team is working with experimentalists to apply the principles to create a working system.

###

The study, titled "Ferroelectric symmetry-protected multibit memory cell," was published February 8. Research was supported by the U.S. Department of Energy Office of Science (Materials Science and Engineering Division) and the European Commission.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science. The U.S. Department of Energy's Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time.

For more information, visit the Office of Science website.

Media Contact

Jared Sagoff
jsagoff@anl.gov
630-252-5549

 @argonne

http://www.anl.gov 

Jared Sagoff | EurekAlert!

More articles from Materials Sciences:

nachricht Think laterally to sidestep production problems
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

nachricht Spin current detection in quantum materials unlocks potential for alternative electronics
16.10.2017 | DOE/Oak Ridge National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>